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This exposition has been guided by John Roe’s lecture notes on K-theory.

In what follows we develop a generalized dimension function that can assist with

analyzing the structure and classification of C⇤-algebras.

Note that if ⌧ is a trace on an algebra A then,
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is a trace on Mn(A). If we need to work with matrices of di↵erent sizes we

stabilize the matrices by adjoining rows and columns of zeros. Thus, we write

⌧1 and M1(A), where M1(A) is the direct limit of the connecting maps

a 7!
 

a 0

0 0

!

and ⌧1 is the trace on M1(A) by the universal property of a direct limit.

We denote the unitalization of A by e

A. Note that if ⌧ is a trace on A then

e⌧ : eA ! F defined by (a,�) 7! ⌧(a) + � is a trace on e

A. Indeed, observe

that ⌧
⇣

(a,�)(b, µ)
⌘

= ⌧

⇣

(ab + �b + µa,�µ)
⌘

= ⌧(ab) + �⌧(b) + µ⌧(a) + �µ =

⌧(ba) + µ⌧(a) + �⌧(b) + µ� = ⌧

⇣

(b, µ)(a,�)
⌘

.
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Definition 0.1 (The monoid V (A)). We call two projections p, q 2 M1(A)

equivalent if they are Murray-von Neumann equivalent. That is p ⇠ q if there

exists a v 2 M1(A) such that p = v

⇤
v and q = vv

⇤. Then V (A) is the set of all

such equivalence classes of projections where a element in V (A) is denoted by

[·]. We make V (A) a moniod by defining addition as [p] + [q] = [p� q]

Note that, by Wegge-Olsen 5.2.10 and 5.2.12: Murray-von Neumann, uni-

tary, and homotopy equivalence all define the same equivalence classes inM1(A).

We denote by K00(A) the Grothendieck group which turns the moniod V (A)

into a group by considering the formal di↵erences [p] � [q] of the equivalence

classes in V (A) in a similar way as the integers are constructed from the nat-

ural numbers. See Wegge-Olsen appendix G for a complete construction. The

universal property of Grothendieck groups lets us extend a homomorphism

↵⇤ : V (A) ! V (B) induced by some morphism ↵ : A ! B to a group ho-

momorphism ↵⇤ : K00(A) ! K00(B). The group K0(A) is defined using this

functoriality by

K0(A) := Ker
⇣

⇡⇤ : K00( eA) ! Z
⌘

.

Theorem 0.2. Let F be a field, and let add(F) be the elements of F viewed as

an additive group. If A is an algebra over the field F and ⌧ is a trace on A.

Then the map dim⌧ : K0(A) ! add(F) defined by dim⌧ ([p]) = ⌧1(p) is a group

homomorphism.

Proof. Note that [p] = [q] in K0( eA) if and only if there is a idempotent r and

x, y, with xy = p � r and yx = q � r. Thus, e⌧1(p) + e⌧1(r) = e⌧1(p � r) =

e⌧1(xy) = e⌧1(yx) = e⌧1(q � r) = e⌧1(q) + e⌧1(r). Hence, e⌧1(p) = e⌧1(q) and

so dime⌧ is well defined. Thus, we can define dim⌧ as the restriction of dime⌧ to

K0(A). That it is a homomorphism follows from linearity.

However, what if we do not have a trace that is defined for every element

of A? For instance A = K(`2N). For this we develop a method to use an

unbounded trace; that is a map ⌧ that is defined on a dense subset of A for

which ⌧ is a trace.

1 Unbounded Traces

Definition 1.1 (Tracial Weight). By A

+ we shall mean the positive elements

of our C

⇤-algebra A. That is elements of the form a

⇤
a. A tracial weight on

a C*-algebra A is a function ⌧ : A

+ ! [0,1] such that ⌧(�1a1 + �2a2) =
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�1⌧(a1)+�2⌧(a2) for all �1,�2 � 0 and all a1, a2 2 A

+; and such that ⌧(a⇤a) =

⌧(aa⇤) for all a 2 A.

Definition 1.2 (Lower Semicontinuous). A tracial weight is called lower semi-

continuous if ⌧( lim
n!1

an)  lim inf
n!1

⌧(an) for all norm convergent sequences {an}
in A

+.

Definition 1.3 (Densely Defined). A tracial weight is densely defined if the set

{a 2 A

+ : ⌧(a) < 1} is dense in A

+.

Definition 1.4 (Unbounded Traces). A tracial weight that is lower semicon-

tinuous and is densely defined is called an unbounded trace.

Lemma 1.5. If I is a dense ⇤-ideal (not necessarily closed) of a C*-algebra

A then ⇤I+ = {a 2 I

+ : kak  1} is an upwards directed set. Moreover, if

u↵ = ↵ 2 ⇤I+
then (u↵)↵2⇤I+

is an approximate unit for A.

Proof. (This proof is an adaption of Murphy’s theorem 3.1.1) First, if a 2 A

+

then (1+a) 2 Inv(A) by the functional calculus. So if a  b =) 1+a  1+ b,

then by Murphy (2.2.5) (1+a)�1 � (1+b)�1 and so 1�(1+a)�1  1�(1+b)�1

Note that, a(1 + a)�1 = 1� (1 + a)�1, and so

a  b =) a(1 + a)�1  b(1 + b)�1
, for all a, b 2 A

+ (1)

Observe that, by the functional calculus, a(1 + a)�1 is positive and
�

�

a(1 + a)�1
�

�

 1 whenever a 2 A

+. Moreover, if a 2 I

+ since I is an ideal, a(1 + a)�1 2
I \ A

+ = I

+. Thus, a(1 + a)�1 2 ⇤I+ whenever a 2 I

+. Next, let a, b 2 ⇤I+ ,

and let a0 = a(1� a)�1
, b

0 = b(1� b)�1 which both exist and are positive since

kak , kbk < 1. Additionally, a0, b0 2 I \ A

+ = I

+ since I is an ideal. Note that

since a

0
, (1 + a

0)�1 2 C

⇤(a, 1) which is commutative, a

0 = a(1 � a)�1 ()
a

0(1 � a) = a () a

0 = a + a

0
a () a

0 = (1 + a

0)a () (1 + a

0)�1
a

0 =

a () a = a

0(1+ a

0)�1. Set c = (a0 + b

0)(1+ a

0 + b

0)�1 and note that, since I+

is closed under addition, c 2 ⇤I+ . Then since a

0  a

0 + b

0, by (1) we have that

a = a

0(1 + a

0)�1  (a0 + b

0)(1 + a

0 + b

0)�1 = c and similarly b  c. Thus, ⇤I+ is

an upwards directed set. Moreover, if we set u↵ = ↵ 2 ⇤I+ , then (u↵)↵2⇤I+
is

an upwards directed net of positive elements.

Next, since ⇤A+ linearly spans A it su�ces to show that a = lim↵ u↵a =

lim↵ au↵ for all a 2 ⇤A+ . Let ✏ > 0 be given. Define ⌦a to be the character

space of the C

⇤-algebra generated by a and for ! 2 ⌦a define â(!) = !(a).

By the Gelfand representation, ' : C⇤(a) ! C0(⌦a), the set K = {! 2 ⌦a :
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|â(!)| � ✏2

2 } is compact. Thus, by Urysohn’s lemma there exists a continuos

function g : ⌦a ! [0, 1] of compact support such that g(!) = 1 for all ! 2 K.

Then
�

�

a� '

�1(g)a
�

� = kâ� gâk1 <

✏2

2 . Note that '�1(g) 2 ⇤A+ . Thus, since

⇤I+ is dense in ⇤A+ , there exists an ↵0 2 ⇤I+ such that
�

�

↵0 � '

�1(g)
�

�

<

✏2

2 .

Observe that:

ka� ↵0ak =
�

�

a� '

�1(g)a+ '

�1(g)a� ↵0a
�

�


�

�

a� '

�1(g)a
�

�+
�

�

'

�1(g)a� ↵0a
�

�  ✏

2

2
+ kak

�

�

'

�1(g)� ↵0

�

�

< ✏

2
.

Then for ↵ 2 ⇤I+ such that ↵ � ↵0, we have 1�u↵  1�u↵0 and so by Murphy

(2.2.5), a(1� u↵)a  a(1� u↵0)a. Thus,

ka� u↵ak2 = k(1� u↵)ak2 =
�

�

�

(1� u↵)
1
2 (1� u↵)

1
2
a

�

�

�

2


�

�

�

(1� u↵)
1
2

�

�

�

2 �
�

�

(1� u↵)
1
2
a

�

�

�

2

�

�

�

(1� u↵)
1
2
a

�

�

�

2

=
�

�

�

a

⇤(1� u↵)
1
2 (1� u↵)

1
2
a

�

�

�

= ka(1� u↵)ak  ka(1� u↵0)ak

 kak k(1� u↵0)ak < ✏

2

Hence, ka� u↵ak < ✏ and a similar argument shows that ka� au↵k < ✏ when-

ever ↵ � ↵0. Thus, a = lim↵ u↵a = lim↵ au↵.

Lemma 1.6. Let ⌧ be an unbounded trace on a C*-algebra A. Let

I

+ = {a 2 A

+ : ⌧(a) < 1} and let I be the linear span of I

+
. The following

claims will show that I is dense in A and admits a norm |||·||| under which I

becomes a Banach algebra. Moreover, |||·||| satisfies the inequality

|||xy|||  kxk |||y|||+ |||x||| kyk .

Claim 1.6.1. I is a dense ⇤-ideal in A and ⌧ extends uniquely to a linear

functional on I which is real on self adjoint elements.

Proof. Recall that every a 2 A can be written as a = b + ic where b, c 2
Asa. Next, let c 2 Asa be arbitrary. Then c

2 = c

⇤
c is positive and so

(c2)1/2 = |c| 2 A

+. Let c

+ = 1
2 (|c| + c), and c

� = 1
2 (|c| � c). Observe that

for � 2 ⌦c, cc+(�) =
1
2 (|�(c)|+ �(c)) and since c 2 Asa, �(c) 2 R so cc+ = 0

or |�(c)|. Hence, by the Gelfand representation, �(c+) = c

c

+(⌦c) ⇢ [0,1). A

similar argument shows that c

� 2 A

+ also. Thus, since c = c

+ � c

�, every
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self adjoint element of A is the real linear combination of two positive elements.

This shows that span(A+) = A and since I

+ is dense in A

+ it follows that I is

dense in A.

Next, by separating a 2 I into its real and imaginary parts to show that

linearly extending ⌧ to I is well defined it su�ces to show that linearly extending

⌧ to real linear combinations of elements of I+ is well defined. Suppose that

m
X

k=1

xkak =
n
X

j=1

yjaj

where the xk’s, yj ’s 2 R and the ak’s , aj ’s 2 I

+. Observe that,

X

xk2R+

xkak +
X

xk2R�

xkak =
m
X

k=1

xkak =
n
X

j=1

yjaj =
X

yj2R+

yjaj +
X

yj2R�

yjaj

()
X

xk2R+

xkak �
X

yj2R�

yjaj =
X

yj2R+

yjaj �
X

xk2R�

xkak.

Then by definition 1.1 we have

X

xk2R+

xk⌧(ak)�
X

yj2R�

yj⌧(aj) =
X

yj2R+

yj⌧(aj)�
X

xk2R�

xk⌧(ak)

()
X

xk2R+

xk⌧(ak) +
X

xk2R�

xk⌧(ak) =
X

yj2R+

yj⌧(aj) +
X

yj2R�

yj⌧(aj)

and so
m
X

k=1

xk⌧(ak) =
n
X

j=1

yj⌧(aj)

Thus, linearly extending ⌧ to I is well defined. Moreover, writing c 2 Isa as

c = c

+ � c

� we have ⌧(c) = ⌧(c+)� ⌧(c�) 2 R.

To show that I is an ideal we proceed indirectly. First, let

J = {x 2 A : ⌧(x⇤
x) < 1}.

Note that if a  b, i.e. b� a 2 A

+ then ⌧(b)� ⌧(a) 2 [0,1] since ⌧ is positive.
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Hence, ⌧(a)  ⌧(b). Thus, for x, y 2 J , the inequality

(x+ y)⇤(x+ y)  (x+ y)⇤(x+ y) + (x� y)⇤(x� y) = 2(x⇤
x+ y

⇤
y)

Shows that J is closed under addition. Moreover, by the proof of 2.2.5(c)

(Murphy), kak2 = ka⇤ak � a

⇤
a so by 2.2.5(b)(Murphy) x

⇤
a

⇤
ax  kak2 x⇤

x.

Thus, if x 2 J and a 2 A, then ax 2 J and so J is a left ideal. Additionally,

since ⌧(x⇤
x) = ⌧(xx⇤), x 2 J implies that x

⇤ 2 J and so J is ⇤-closed. Then

since J is a left ideal, for x 2 J , a⇤x⇤ 2 J =) (a⇤x⇤)⇤ = xa 2 J so J is a

two-sided ideal. Next consider J

2 = span{xy : x, y 2 J}. Clearly J

2 is closed

under addition; and since J is a two sided ideal that is ⇤-closed, so is J2. Then

for x, y 2 J , let zn = i

n
x+ y so that zn 2 J . The polarization identity,

x

⇤
y =

1

4

3
X

n=0

i

n
z

⇤
nzn,

shows that J

2 is the linear combination of elements of I

+. Hence, J

2 ✓ I.

Next, if a 2 I

+, then a

1/2 is positive so that a1/2 2 J and so a 2 J

2. Since such

elements generate I we have that I ✓ J

2 and so I = J

2. Hence, I is a two sided

⇤-ideal

Claim 1.6.2. The ideal I is hereditary; i.e. if 0  a  a

0
, then a

0 2 I implies

that a 2 I.

Proof. Since a  a

0
, a

0 � a 2 A

+ so, ⌧(a0 � a) = ⌧(a0)� ⌧(a) � 0

=) 1 � ⌧(a0) � ⌧(a) � 0.

Claim 1.6.3 (Roe). The (extended) linear functional ⌧ has the property that

⌧(xy) = ⌧(yx) whenever x 2 I and y 2 A. In particular, it is a trace (in the

algebraic sense) on I.

Proof. Since x 2 I, x =
n
X

k=1

�kxk where xk 2 I

+. Writing y = a+ib where a, b 2

Asa, we have that; yx =
n
X

k=1

(�kaxk + i�kbxk), and xy =
n
X

k=1

(�kxka+ i�kxkb).

Since ⌧ is linear without loss of generality we may assume that x 2 I

+ and

a 2 Asa. First consider the case where x, y 2 J . Then the polarization identity

gives us that,

⌧(xy) = ⌧(x⇤
y) = ⌧(yx⇤) = ⌧(yx)
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since ⌧(z⇤nzn) = ⌧(znz⇤n) by definition. For the general case, since x 2 I

+ it

follows that x

1/2 2 J . Since J is a two sided ideal yx1/2 2 J and x

1/2
y 2 J .

Thus, using the previous result twice we have that

⌧(xy) = ⌧(x1/2
x

1/2
y) = ⌧(x1/2

yx

1/2) = ⌧(yx1/2
x

1/2) = ⌧(xy).

Claim 1.6.4. For all x, y 2 J , h·, ·iHS⌧ defined by hx, yiHS⌧ = ⌧(x⇤
y) is a

semi-inner product. Moreover, k·kHS⌧ = |h·, ·iHS⌧ |1/2 has the property that

kaxkHS⌧  kak kxkHS⌧ for all x 2 J and a 2 A.

Proof. First we show that h·, ·iHS⌧ is a semi-inner product. Let ↵,� 2 C and

let x, y, z 2 J . Observe that:

1. ⌧
�

(↵x+ �y)⇤z
�

= ⌧

�

(↵x⇤ + �y

⇤)z
�

= ↵⌧(x⇤
z) + �⌧(y⇤z)

2. ⌧
�

x

⇤(↵y + �z)
�

= ↵⌧(x⇤
y) + �⌧(x⇤

z)

3. ⌧(x⇤
x) � 0 by the definition of ⌧ .

4. Let zn be defined as before. Since z

⇤
nzn 2 I

+ it follows that ⌧(z⇤nzn) =

⌧(z⇤nzn). Expanding both for n = 1, 2, some algebra shows that , ⌧(x⇤
y) =

⌧(y⇤x).

Lastly,

x

⇤
a

⇤
ax  kak2 x⇤

x =) ⌧

�

(ax)⇤ax
�

 kak2 ⌧(x⇤
x) =) kaxkHS⌧  kak kxkHS⌧ .

Claim 1.6.5. If a 2 I then |a| = (a⇤a)
1
2 2 I. Moreover, for all a 2 I and b 2 A

we have that |⌧(ab)|  kbk ⌧(|a|).

Proof. We use semicontinuity and an approximation argument. First consider

the case where a 2 I

+. We have that,

|⌧(ab)| = |ha1/2, a1/2bi| 
�

�

�

a

1/2
�

�

�

HS⌧

�

�

�

a

1/2
b

�

�

�

HS⌧

�

�

�

a

1/2
�

�

�

2

HS⌧
kbk = ⌧(a) kbk

(2)

Next, let a 2 I. since a =
n
X

k=1

�kak where ak 2 I

+ for all k. We have that,

|⌧(ab)| =

�

�

�

�

�

n
X

k=1

�k⌧(akb)

�

�

�

�

�


n
X

k=1

|�k|⌧(ak) kbk = C kbk (3)
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where the last inequality is given by (2) and C > 0 is a constant depending on a.

Now, for a 2 I let wn = a(1/n+ a

⇤
a)1/2. Since a 2 I and I is an ideal, wn 2 I.

Define hn : �(a⇤a) ! R by hn(x) = (1/n+ x)�1/2
x where �(a) is the spectrum

of a. Then w

⇤
na = hn(a⇤a), so �(w⇤

na) = hn(�(a⇤a)) ✓ [0,1). Thus, {w⇤
na}

is a sequence of positive elements. Now consider, gn : �(a⇤a) ! R defined by

gn(x) = (1/n+x)�1/2
x�x

1/2. Observe that limn!1 gn = 0, so there exists anN

such that |gn| < ✏ whenever n � N . Hence, �(gn(a⇤a)) = gn(�(a⇤a)) ✓ (�✏, ✏)
whenever n � N and since gn(a⇤a) is self-adjoint, w⇤

na converges in norm to |a|.
By inequality (3) the sequence ⌧(w⇤

na) is bounded, so by lower semicontinuity,

⌧(|a|) < 1. Thus, |a| 2 I

+ ⇢ I

To show that |⌧(ab)|  kbk ⌧(|a|) for all a 2 I, b 2 A we first note that

kwnk  1 for all n. Indeed, consider the continuous functions fn : �(a⇤a) !
R defined by fn(x) = ( 1n + x)�

1
2
x( 1n + x)�

1
2 . Then for all n, 0  fn < 1,

and so �(fn(a⇤a)) = fn(�(a⇤a)) ✓ [0, 1). Moreover, since fn(a⇤a) = w

⇤
nwn 2

Asa, kw⇤
nwnk 2 [0, 1] and so, kwnk  1 for all n. Next, let ✏ > 0 be given. Let

a 2 I and b 2 A be fixed but arbitrary. Then, since I is dense in A, we may

choose b

0 2 I such that

kb0 � bk < min

⇢

✏

2⌧(|a|) ,
✏

2C

�

. (4)

Notice that, by (3), the function ⌧b0 : A ! C defined by c 7! ⌧(cb0) is a

bounded linear functional on A and so is continuos. Thus, for any sequence

{cn} in A norm converging to c we have that

⌧(cb0) = lim
n!1

⌧(cnb
0) (5)

Observe that, kwn|a|� ak2 = k(wn|a|� a)⇤(wn|a|� a)k ! 0 by using the func-

tional calculus as we did with gn. Thus, using (5) we have,

|⌧(ab0)| = lim
n!1

�

�

⌧(wn|a|b0)
�

�

1.6.3
= lim

n!1

�

�

⌧(|a|b0wn)
�

�

(2)
 ⌧(|a|) kb0k sup

n
kwnk  ⌧(|a|) kb0k .

Observe that,

�

�

�

|⌧(ab)|� |⌧(ab0)|
�

�

�


�

�

⌧

�

a(b� b

0)
�

�

�

(3)
 C kb� b

0k
(4)
<

✏

2
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so that, |⌧(ab)|� ✏
2 < |⌧(ab0)|. Also,

�

�

⌧(|a|) kb0k � ⌧(|a|) kbk
�

�  ⌧(|a|) kb0 � bk <

✏

2

so that, ⌧(|a|) kb0k < ⌧(|a|) kbk + ✏
2 . Hence, |⌧(ab0)|  ⌧(|a|) kb0k implies that

|⌧(ab)| < ⌧(|a|) kbk + ✏. Then, since ✏ was arbitrary we obtain the desired

inequality.

Claim 1.6.6. The inequality ⌧(|a+ b|)  ⌧(|a|) + ⌧(|b|) holds for all a, b 2 I.

Proof. Note that for all x such that kxk  1, |⌧(ax)|  ⌧(|a|) kxk  ⌧(|a|)
by 1.6.5. Thus, sup

kxk1
|⌧(ax)|  ⌧(|a|). Next, since kw⇤

nk = kwnk  1 lower

semicontinuity gives us that ⌧(|a|)  lim inf
n!1

⌧(w⇤
na)  sup

kxk1
|⌧(ax)|. Hence,

⌧(|a|) = sup
kxk1

|⌧(ax)| (6)

Thus,

⌧(|a+ b|) = sup
kxk1

|⌧(ax)+ ⌧(bx)|  sup
kxk1

|⌧(ax)|+ sup
kxk1

|⌧(bx)| = ⌧(|a|)+ ⌧(|b|)

Remark. Note that 1.6.6 implies that,

⌧(|ab|) = sup
kxk1

|⌧(abx)|
1.6.5
 sup

kxk1
⌧(|a|) kbk kxk = ⌧(|a|) kbk (7)

Remark. For any a 2 A using the functional calculus on C

⇤(a⇤a, 1), it follows

that, (a⇤a)
1
2 � ( 1n + a

⇤
a)�

1
2
a

⇤
a 2 A

+ for all n so that ⌧(w⇤
na)  ⌧(|a|). Thus,

lim sup
n!1

⌧(w⇤
na)  ⌧(|a|)  lim inf

n!1
⌧(w⇤

na) by lower semicontinuity. Hence,

lim
n!1

⌧(w⇤
na) = ⌧(|a|) (8)

for all a 2 A.

Claim 1.6.7. If ⌧ is an unbounded trace; the inequality ⌧(|a+b|)  ⌧(|a|)+⌧(|b|)
holds for all a, b 2 A.

Proof. Let (u↵)↵2⇤I+
be the approximate unit from lemma 1.5, and let x↵ =

u↵a. Note that x↵ 2 I since I is a two sided ideal and u↵ 2 I for all ↵. Also

9



note that, ku↵k2  1. Thus,

|x↵|2 = x

⇤
↵x↵ = a

⇤
u

2
↵a  a

⇤ �
�

u

2
↵

�

�

a  |a|2

by Murphy (2.2.5). Thus, since taking roots of positive elements preserves

inequalities, |x↵|  |a| for all ↵, and so

lim sup
↵2⇤I+

⌧(|x↵|)  ⌧(|a|). (9)

Next, since x↵
k·k��! a and a 7! |a| is continuous by Rødam (1.2.5), it follows

that |x↵|
k·k��! |a|. So by (9) and lower semicontinuity,

⌧(|a|)  lim inf
↵2⇤I+

⌧(|x↵|).

Thus, we have that

lim
↵2⇤I+

⌧(|x↵|) = ⌧(|a|). (10)

Similarly, if we let y↵ = u↵b, then lim↵2⇤I+
⌧(|y↵|) = ⌧(|b|). Observe that,

x↵ + y↵ = u↵(a + b) so using the continuity of the map a 7! |a| once more we

have |x↵ + y↵|
k·k��! |a + b|. Hence, by lower semicontinuity and 1.6.6 we have

that,

⌧(|a+ b|)  lim inf
↵2⇤I+

⌧(|x↵ + y↵|)  lim inf
↵2⇤I+

⇣

⌧(|x↵|) + ⌧(|y↵|)
⌘

= ⌧(|a|) + ⌧(|b|).

Claim 1.6.8. For a 2 A, if |a| 2 I, then |a⇤| 2 I.

Proof. Define wn as before. Let ✏ > 0, and let

gn(x) =
⇣ 1

n

+ x

⌘� 1
2
x

1
2

⇣ 1

n

+ x

⌘� 1
2

on [0, kak2]. Then by Stone-Weierstrass, for each n there exists a polynomial

fn such that |gn(x) � fn(x)| < ✏
2kak2 for all x 2 [0, kak2]. Note that for any

polynomial f we have that

af(a⇤a)a⇤ = a

 

X̀

k=1

ak(a
⇤
a)k
!

a

⇤ =
X̀

k=1

aka(a
⇤
a)ka⇤

10



=
X̀

k=1

ak(aa
⇤)kaa⇤ =

 

X̀

k=1

ak(aa
⇤)k
!

aa

⇤ = f(aa⇤)aa⇤

Observe that,

kagn(a⇤a)a⇤ � gn(aa
⇤)aa⇤k

= kagn(a⇤a)a⇤ � af(a⇤a)a⇤ + f(aa⇤)aa⇤ � gn(aa
⇤)aa⇤k

 kak kgn(a⇤a)� fn(a
⇤
a)k kak+ kak2 kgn(aa⇤)� fn(aa

⇤)k < ✏.

Thus,

wn |a|w⇤
n = agn(a

⇤
a)a⇤ = gn(aa

⇤)aa⇤ =
⇣ 1

n

+ aa

⇤
⌘�1

(aa⇤)
3
2

and so wn |a|w⇤
n

k·k��! |a⇤| by the functional calculus. Hence, by lower semicon-

tinuity,

⌧(|a⇤|)  lim inf
n!1

⌧(wn |a|w⇤
n)

1.6.3
= lim inf

n!1
⌧(|a|w⇤

nwn)

1.6.5
 lim inf

n!1
⌧(|a|) kw⇤

nwnk  ⌧(|a|)

and so |a⇤| 2 I.

Claim 1.6.9. For a 2 A, if |a| 2 I, then a 2 I.

Proof. First, if a 2 Asa then |a| = a

+ + a

� where a

+ and a

� are defined in the

proof of 1.6.1. Then, |a|� a

+ = a

� 2 A

+ and |a|� a

� = a

+ 2 A

+. Thus, since

I is hereditary by 1.6.2, a+, a� 2 I, and so a

+ � a

� = a 2 I.

Next, for a general a 2 A we separate a into its real and imaginary parts,

a = x+ iy. Then,

2⌧(|x|) = ⌧(|x+ iy + x� iy|)
1.6.7
 ⌧(|a|) + ⌧(|a⇤|) < 1,

by the previous claim. Thus, by the self-adjoint case, x 2 I and similarly for y

and so a = x+ iy 2 I.

Claim 1.6.10. The map |||·||| : I ! [0,1) given by |||a||| = kak + ⌧(|a|) is

a sub-multiplicitive norm for I which makes I a non-unital Banach algebra.

Moreover, this norm satisfies the inequality |||xy|||  kxk |||y|||+ |||x||| kyk .

Proof. First we show that |||·||| is a norm. Observe that:

1. |||�a||| = k�ak+ ⌧(|�a|)  |�|
⇣

kak+ ⌧(|a|)
⌘

since ⌧ is linear.
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2. Since kak � 0 and ⌧(|a|) � 0 (since |a| 2 I

+), |||a||| � 0. Moreover, if

|||a||| = 0 then kak = 0 by positivity and so a = 0 since k·k is a norm.

Next, 0 2 I whenever I is nonempty. Then since |0| = (0⇤0)
1
2 = 0, ⌧(|0|) =

⌧(|0|) + ⌧(|0|) implies ⌧(|0|) = 0 so that |||0||| = 0.

3. |||a+ b||| = ka+ bk+⌧(|a+b|)
1.6.6
 kak+kbk+⌧(|a|)+⌧(|b|) = |||a|||+|||b|||

4. |||ab||| = kabk+ ⌧(|ab|)  kak kbk+ ⌧(|ab|)
(7)
 kak kbk+ ⌧(|a|) kbk

= |||a||| kbk  |||a|||(kbk+ ⌧(|b|)) = |||a||| |||b|||.

To show completeness suppose that {an} is a Cauchy sequence under |||·|||.
Then given ✏ > 0 there exists an N > 0 such that

|||an � am||| = kan � amk+ ⌧(|an � am|) < ✏

whenever n,m � N . This means that {an} is Cauchy under k·k and so converges

to some a 2 A. Additionally, this implies that ⌧(|an � am|) < ✏ whenever

m,n � N . Moreover, 1.6.6 implies that ⌧(|an|) � ⌧(|aN |) < ⌧(|an � aN |).
Putting this together we have that ⌧(|an|) < ⌧(|aN |) + ✏ for all n � N . Thus,

the sequence {⌧(|an|)} is bounded so by lower semicontinuity |a| 2 I. Hence,

by 1.6.9, a 2 I. Moreover, since ⌧(|aN � an|) < ✏ whenever n � N lower

semicontinuity once more gives ⌧(|an � a|) ! 0. Thus, an ! a under |||·||| and
our space is complete.

Finally, |||ab||| = kabk + ⌧(|ab|)  kak kbk + ⌧(|ab|)
(7)
 kak kbk + ⌧(|a|) kbk =

|||a||| kbk  |||a||| kbk+ kak |||b||| so the inequality is satisfied.

Remark. Note that if A is unital then I = A since the invertibles are open and

I is a dense ideal. Thus, our unbounded trace is just a trace and so what we

have developed is only interesting in the non-unital case.

2 K-theory and Dense Subalgebras

Now that we have a dense subalgebra I which is the domain of an unbounded

trace ⌧ we would like to know: Under what conditions a dense subalgebra

will have the same K-theory as its parent algebra. Moreover, does our dense

subalgebra I meet those conditions? For now we will assume that our parent

algebra A is unital which, as we will see, will not make a di↵erence when we

switch to the K-theory in the non-unital case.
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Lemma 2.1. For any dense unital subalgebra B of a unital Banach algebra A

the following are equivalent.

i) B is inverse closed in A.

ii) Every maximal right ideal n of B is a relatively closed subset. That is,

n = B \ n.

iii) Every irreducible B-module N extends to an A-module M ; that is, N is a

B-submodule of the restriction of M to B.

Proof. i) =) ii): Since B is inverse closed in A, n \ Inv(A) = ; for every

maximal right ideal n of B. By definition, every neighborhood of a 2 n contains

a point of n. Since Inv(A) is open, n \ Inv(A) = ;. Next, we show that n is

a right ideal in A. Since B is dense in A and addition and multiplication are

continuous, given any ↵a+ �b where ↵,� 2 n we may construct a sequence

↵nan + �nbn such that k↵nan + �nbn � (↵a+ �b)k < 2�n

where ↵n,�n 2 n and an, bn 2 B. Thus, ↵a + �b 2 n so that n is an ideal in

A. Then it follows that n \B is an ideal in B. Moreover, since n \B does not

contain the unit it is a proper ideal of B. Thus, by maximality, n \ B = n and

so n is relatively closed.

ii) =) iii): Suppose that N is an irreducible B-module. Define 'n : B !
N by a 7! na where n 2 N . Then for any nonzero n 2 N we have that

'n(1) = n 6= 0 so that 'n is nonzero whenever n 6= 0. Fix a nonzero n 2 N .

Since the image of 'n is a submodule of the irreducible module N , we must have

that 'n is surjective. Let n be the kernel of 'n. Then  n, the map induced by

'n on n�B, is an isomorphism. Hence, n is a maximal right ideal of B.

Next, let m = n. Then by ii), n = m \ B. So, by the second isomorphism

theorem,

N

⇠= m \B

�B ⇠= m�m+B ✓ m�A = M.

iii) =) i): We show the contrapositive. Suppose that B is not inverse

closed in A. That is, there exists an a 2 B that is invertible in A but not

invertible in B. Since a is invertible in A, a cannot have a right inverse in B by

the uniqueness of inverses. Consider the right ideal generated by a, (a) = aB.

Since a is not right invertible /2 (a) so that (a) is a proper right ideal. Thus,
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(a) is contained in a maximal right ideal, say n 2 B. Then n�B is an irreducible

B-module. Letting [ ] 2 n�B be the class of the identity of B we have that,

[ ]a = a = 0, i.e. (n+ )a = n+ a = n since a 2 n (11)

Note that for any A-module M , since a 2 Inv(A) the map M ! M defined by

m 7! ma is injective. Thus, if n�B were contained in the restriction of M to

B, by (11) we would have that [ ] 7! 0. Since this map is injective that would

mean [ ] = 0, a contradiction.

Corollary 2.1.1. Let B be a dense unital subalgebra of the unital Banach alge-

bra A (with the same unit). Then Mn(B) is inverse closed in Mn(A) whenever

B is inverse closed in A for all n.

Proof. Let eij be the n⇥n matrix with 1A in the ij’th entry and zeros elsewhere

and let idn be the identity matrix in Mn(B). Note that for any Mn(B)-module,

say W , W = idn(W ) =
Pn

i=1 eii(W ). Moreover, if x 2 eii(W ) \ ejj(W ) where

i 6= j, then eiiy = x = ejjy
0 for some y, y

0 2 W . Thus, 0 = eiiejjy
0 =

eiieiiy = eiiy = x. So eii(W ) \ ejj(W ) = {0} whenever i 6= j. Furthermore,

eii(W ) ⇠= ejj(W ) ⇠= N for some B-module N by means of the shift operator.

Hence, any Mn(B)-module W is the direct sum N

L
n for some B-module N .

Next, note that any submodule V  W is of the form L

L
n for some B-module

L which is a submodule of N . Thus, V  W if and only if L  N and so;

any Mn(B)-module W = N

L
n is irreducible if and only if N is an irreducible

B-module.

By supposition B is inverse closed in A, so by the previous lemma every

irreducible B-module N extends to a A-module M . Since every irreducible

Mn(B)-module is of the form N

L
n where N is a irreducible B-module it follows

that N
L

n extends to the Mn(A)-module M

L
n. Thus, by the previous lemma

once more, Mn(B) is inverse closed in Mn(A).

Theorem 2.2. Let A be a unital C

⇤
-algebra and let B ✓ A be a dense unital

Banach ⇤-subalgebra such that

i) There is a topology on B stronger then the topology B inherits from A under

which B is a Banach algebra.

ii) B is inverse closed in A.

Then the natural map induced by inclusion, ◆⇤ : K0(B) ! K0(A), is an isomor-

phism.
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proof of surjectivity. First we show that the map is surjective. Note that it

su�ces to show that for an element of the form [p] 2 K0(A) there exists

a [q] 2 K0(B) such that [p] = [q] since such elements generate K0(A) and

K0(B). Thus, for [p] 2 K0(A), p = (aij) is a projection in Mn(A) for some

n. Since B is dense in A, given ✏ > 0 there exists a bij for each aij such that

kaij � bijk <

✏
n2 . Let y = (bij) 2 Mn(B). Then by the triangle inequality,

kp� yk 
Pn

i,j=1 kaij � bijk < ✏. Take x = 1
2 (y + y⇤), then

kx� pk =

�

�

�

�

1

2
(y � p+ y

⇤ � p

⇤)

�

�

�

�

 1

2
ky � pk+ 1

2
k(y � p)⇤k  ✏.

Thus, for any ✏ > 0 there exists a self-adjoint x 2 Mn(B) such that kx� pk < ✏.

Note that kxk  ✏+ kpk; and so,

�

�

x

2 � x

�

� =
�

�

x

2 � p+ p� x

�

� 
�

�

x

2 � p

2
�

�+kp� xk = k(x+ p)(x� p)k+kx� pk

< ✏ kx+ pk+ ✏  ✏(✏+ kpk+ kpk) + ✏ = ✏

2 + ✏(2 kpk+ 1) < ✏

2 + 3✏.

Hence, we may take ✏ small enough so that
�

�

x

2 � x

�

�

< ⌘ where ⌘ 2 (0, 1
4 ]. Thus,

by the functional calculus, we may take ⌘ small enough that �(x) ✓ (� 1
n ,

1
n ) [

(1 � 1
n , 1 + 1

n ), n � 4. Let q be the spectral projection of x corresponding to

the interval (1� 1
n , 1 +

1
n ) = Kn; i.e. �Kn(x). Then q is a projection since

�Kn(t) = (�Kn(t))
2 = �Kn(t) for any t 2 �(x).

Moreover, |t� �Kn(t)| < 1
n for all t 2 �(x) so that kx� qk <

1
n . Then kq � pk 

kq � xk+kx� pk <

1
n +✏. Taking ✏ 

1
n we have that kp� qk <

2
n . Take n = 4.

Note that if p and q are conjugate (possibly after stabilization) they are both

representatives of the same class in K0(A). Let u = pq + (1 � p)(1 � q). Then

pu = pq = uq so to show that [p] = [q] we need only show that u is invertible.

Observe that, u = pq+1�p�q+pq = 1+p�q�2p+2pq = 1+(1�2p)(p�q),

and since p is a projection the functional calculus shows that k1� 2pk = 1.

Hence,

k1� uk  k1� 2pk kp� qk <

1

2

so that u is invertible and [p] = [q] in K0(A).

It remains to be shown that q 2 Mn(B). Let � be a smooth closed convex

curve in the resolvent set of x encircling ( 12 ,
3
2 ) but not (� 1

2 ,
1
2 ) parameterized

by t on [a, b]. For instance, the circle centered at 1 of radius 1/2 given by z(t) =
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1+ 1
2e

it for t 2 [0, 2⇡]. Form a partition of [a, b], i.e. a = t0 < t1 < · · · < tn = b,

where tj�1  t

0
j  tj . Consider the limit of the Riemann sum

1

2⇡i

n
X

j=1

⇣

z(t0j)� x

⌘�1
[z(tj)� z(tj�1)] (12)

as |P | := max{tj � tj�1 : j = 1, · · · , n} ! 0. Note that this sum converges

in the norm of B to the line integral of the Banach space valued function

( z(t) � x)�1, i.e. 1
2⇡i

R

�( z(t) � x)�1
dz. Indeed, Since since , x 2 B and

B is inverse closed, we have that ( z(t) � x)�1 2 B. Then since inversion is

continuous on the invertible elements of B (Murphy 1.2.3) and [a, b] is compact,

t 7! ( z(t) � x)�1 is uniformly continuous. Hence, there exists a � such that
�

�( z(tj)� x)�1 � ( z(ti)� x)�1
�

�

B
<

✏
|�| whenever |tj � ti| < � Thus, given

any two partitions P and Q such that |P | , |Q| < � we have that,

�

�

�

�

�

�

n
X

j=1

⇣

z(t0j)� x

⌘�1
[z(tj)� z(tj�1)]�

m
X

i=1

⇣

z(t0i)� x

⌘�1
[z(ti)� z(ti�1)]

�

�

�

�

�

�

B

<

✏

|�|
X̀

k=1

|z(tk)� z(tk�1)|  ✏

where {tk} is the refinement of the partitions P, Q.

Next, let ' be any multiplicative linear functional on the C

⇤-algebra gener-

ated by x and . Since �K(x) is the limit of polynomials in x and , we see

that '(�K(x)) = �K('(x)). Also, by considering (12) it follows that,

'

⇣ 1

2⇡i

Z

�
( z(t)� x)�1

dz

⌘

=
1

2⇡i

Z

�
(z(t)� '(x))�1

dz.

Hence,

'(�K(x)) = �K('(x)) =
1

2⇡i

Z

�
(z(t)�'(x))�1

dz = '

⇣ 1

2⇡i

Z

�
( z(t)�x)�1

dz

⌘

Thus, since multiplicative linear functionals separate points,

q = �K(x) =
1

2⇡i

Z

�
(z(t)� x)�1

dz

so that q 2 Mn(B) and our map is surjective.
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proof of injectivity. Suppose that [p1], [p2] are in K0(B) such that [p1] = [p2] in

K0(A). We need to show that [p1] = [p2] in K0(B). Since [p1] = [p2] in K0(A)

there exists a projection r 2 Mm(A) and a n 2 N such that (possibly by passing

to a larger matrix by adding zeros) (p1 � r) is conjugate to (p2 � r) in Mn(A).

That is, there is a u 2 GLn(A) such that u(p1 � r)u�1 = (p2 � r). Let ✏ > 0 be

given. Note that we may construct a projection r0 2 Mm(B) as we did for q in

the proof of surjectivity such that

kr � r0k < min
n

✏

4
,

✏

4 kuk ku�1k

o

.

Let

�1 =
✏

4 kp1 � r0k ku�1k , �2 =
✏

�

�

u

�1
�

�

4 kuk ku�1k kp1 � r0k+ ✏

=
✏

4(kuk+ �1) kp1 � r0k
.

Next, by the continuity of inversion, there exists a � > 0 such that
�

�

u

�1 � v

�1
�

�

<

�2 whenever ku� vk < �. Since GLn(A) is open in Mn(A), by the density of B

in A we can choose a v 2 GLn(B) such that ku� vk < min{�, �1}. Then since

kvk < kuk+ �1 we have that,

�

�

v(p1 � r0)v
�1 � (p2 � r0)

�

�


�

�

v(p1 � r0)(v
�1 � u

�1)
�

�+
�

�(v � u)(p1 � r0)u
�1
�

�

+
�

�

�

u

⇣

(p1 � r0)� (p1 � r)
⌘

u

�1
�

�

�

+ k(p2 � r)� (p2 � r0)k

< (kuk+ �1) kp1 � r0k
�

�

v

�1 � u

�1
�

�+ kv � uk kp1 � r0k
�

�

u

�1
�

�

+ kuk
�

�

u

�1
�

� kr0 � rk+ kr0 � rk < ✏.

Next, let q = v(p1 � r0)v�1
, p = p2 � r0, and let w = pq + (1 � p)(1 � q).

By the same argument as in the surjective case, pw = wq and w is invertible

whenever ✏ < 1. Note that w,w

�1 2 Mn(B) since q, p 2 Mn(B). Thus, since

p2� r0 = (wv)(p1� r0)(wv)�1 we have that [p1� r0] = [p2� r0] =) [p1] = [p2]

in K0(B) and so our map is injective.

Corollary 2.2.1. Let A be a unital C

⇤
-algebra and let B ✓ A be a dense

unital ⇤-subalgebra which becomes a Banach algebra in some norm k·kB � k·kA.
Suppose that there is some constant C � 1 such that

kabkB  C

⇣

kakA kbkB + kakB kbkA
⌘

for all a, b 2 B. (13)
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Then the natural map induced by inclusion K0(B) ! K0(A), is an isomorphism.

Proof. By the previous theorem we need only show inverse closure. For an arbi-

trary a 2 B, applying (13) to x = y = a

n we have
�

�

a

2n
�

�

B
 2C kankB kankA.

Note that if p(x) = x

2 then since p(�(a)) = �(p(a)), if � 2 �(a) then �

2 2
�(p(a)). Thus, if rB(a) is the spectral radius of a 2 B, then rB(a2) = (rB(a))2.

Hence,

(rB(a))
2 = lim

n!1

�

�

a

2n
�

�

1
n

B
 lim

n!1
(2C)

1
n kank

1
n
B kank

1
n
A = rB(a)rA(a),

so that rB(a)  rA(a) by the spectral radius formula. Next, if an element c 2 B

is not invertible in A then it is not invertible in B so that �A(a) ✓ �B(a) and

so rA(a)  rB(a). Therefore, rB(a) = rA(a).

Now if a is invertible in A then a

⇤
a is invertible in A. Since a

⇤
a is positive

and invertible, �A(a⇤a) ✓ [⌘, kak2] for some ⌘ 2 R>0. Let � > kak2. Observe

that,

µ 2 �A(�� a

⇤
a) () µ� � 2 �A(�a

⇤
a) () �� µ 2 �A(a

⇤
a) ✓ [⌘, kak2].

It follows that, kak2 � �� µ > kak2 � µ, so µ > 0. Moreover, �� µ � ⌘ > 0 so

that for all µ 2 �A(��a

⇤
a), � > µ > 0. Hence, rB(��a

⇤
a) = rA(��a

⇤
a) < �,

that is � 62 �B(�� a

⇤
a) and so a

⇤
a = �� (�� a

⇤
a) is invertible in B. Suppose

c is the inverse of a⇤a in B. Then ca

⇤ is a left inverse of a in B. Since ca

⇤ is a

left inverse of a in A also, it must be the inverse in A and so a is invertible in

B. Thus, B is inverse closed.

Now we return to the case where A and B are non-unital.

Lemma 2.3. Suppose that B is a nonunital Banach ⇤-algebra and A is a

nonunital C

⇤
-algebra containing B. If B is dense in A then

e

B is dense in

e

A. Moreover, if k·kB � k·kA then k·k eB � k·k eA.

Proof. Let ✏ > 0 and (a,�) be given. Since B is dense in A, given any a 2
A there exists a b 2 B such that ka� bkA < ✏. Thus, k(a,�)� (b,�)k eA =

k(a, 0)� (b, 0)k eA = ka� bkA < ✏, since the inclusion a 7! (a, 0) is an isometric

⇤-homomorphism.

Next, recall that if B is a Banach algebra, setting k(b,�)k eB = kbkB + |�|
makes eB a Banach algebra. Observe that, k(b,�)k eA  k(b, 0)k eA + k(0,�)k eA =

kbkA + |�|  kbkB + |�| = k(b,�)k eB .
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Lemma 2.4. Suppose that B is a nonunital Banach ⇤-algebra such that B is

dense in A, a nonunital C

⇤
-algebra. Suppose also that

kabkB  kakA kbkB + kakB kbkA for all a, b 2 B. (14)

Then for �, µ 2 C we have,

k(a,�)(b, µ)k eB  6
⇣

k(a,�)k eA k(b, µ)k eB + k(a,�)k eB k(b, µ)k eA

⌘

Proof. First, let x 2 Asa and r 2 R. Define fr(y) = y + r, which is continuous

on � eA((x, 0)). Moreover, fr((x, 0)) = (x, r), and so

� eA((x, r)) = � eA(fr((x, 0))) = fr(� eA((x, 0))) = �A(x) + r.

Let b = sup�A(x), and let a = inf �A(x). Then since x 2 Asa and A is nonunital,

kxkA = �a or b. Moreover, since (x, r) 2 e

Asa,

k(x, r)k eA = max{
�

�sup� eA((x, r))
�

�

,

�

�inf � eA((x, r))
�

�}

= max{|sup�A(x) + r| , |inf �A(x) + r|}

Observe that,

�

�

�

�

⇣

x,

a� b

2
� a

⌘

�

�

�

� eA
=

�

�

�

�

sup�A(x) +
a� b

2
� a

�

�

�

�

=

�

�

�

�

inf �A(x) +
a� b

2
� a

�

�

�

�

=
b� a

2

Next, if r >

a�b
2 � a then b+ r >

b�a
2 � 0, so that

�

�

�

�

⇣

x,

a� b

2
� a

⌘

�

�

�

� eA
=

b� a

2
< b+ r  k(x, r)k eA .

On the other hand, if r <

a�b
2 � a then a+ r <

a�b
2  0, so that

�

�

�

�

⇣

x,

a� b

2
� a

⌘

�

�

�

� eA
=

b� a

2
< |a+ r|  k(x, r)k eA .

Note that,

kxkA � a

2
� 1

2
kxkA and that

b+ kxkA
2

� 1

2
kxkA .
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Thus, since kxkA = �a or b, we have that

kxkA  b� a = 2

�

�

�

�

⇣

x,

a� b

2
� a

⌘

�

�

�

� eA
 2 k(x, r)k eA

for all x 2 Asa and all r 2 R.
Next, for a general element a 2 A we write a = x + iy Then for � 2 C by

the self adjoint case we have,

kakA  kxkA + kykA  2 k(x,Re(�))k eA + 2 k(y, Im(�))k eA .

Since

k(x,Re(�))k eA =
1

2
k(a,�) + (a,�)⇤k eA  k(a,�)k eA

and similarly, k(y, Im(�))k eA  k(a,�)k eA, we have that,

kakA  4 k(a,�)k eA for all a 2 A and all � 2 C (15)

Note that � 2 �(a,�) since (0,�)� (a,�) = (a, 0) is not invertible. Thus, for all

� 2 C and all a 2 A we have that,

|�|  k(a,�)k eA (16)

Putting all this together we have,

k(a,�)(b, µ)k eB  kab+ �b+ aµkB + |�µ|  kabk+ |�| kbkB + |µ| kakB + |�µ|

(14)
 kakA kbkB + kakB kbkA + |�| kbkB + |µ| kakB + |�µ|

= kakB
⇣

kbkA + |µ|
⌘

+ kbkB
⇣

kakA + |�|
⌘

+ |�µ|


⇣

kakB + |�|
⌘⇣

kbkA + |µ|
⌘

+
⇣

kbkB + |µ|
⌘⇣

kakA + |�|
⌘

+ |�µ|

(15)
 k(a,�)k eB

⇣

4 k(b, µ)k eA + |µ|
⌘

+ k(b, µ)k eB

⇣

4 k(a,�)k eA + |�|
⌘

+ |�µ|

 4
⇣

k(a,�)k eB k(b, µ)k eA+k(b, µ)k eB k(a,�)k eA

⌘

+|µ| k(a,�)k eB+|�| k(b, µ)k eB+|�| |µ|

(16)
 5

⇣

k(a,�)k eB k(b, µ)k eA + k(b, µ)k eB k(a,�)k eA

⌘

+ k(a,�)k eA

⇣

kbkB + |µ|
⌘

= 6
⇣

k(a,�)k eB k(b, µ)k eA + k(b, µ)k eB k(a,�)k eA

⌘

,
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as was to be shown.

Theorem 2.5. Let I be the ideal obtained from a unbounded trace ⌧ from the

previous section. Then the natural map induced by inclusion, ◆⇤ : K0(I) !
K0(A), is an isomorphism.

Proof. Note that the inclusion maps ◆ : I ,! A and e◆ : eI ,! e

A are algebra

homomorphisms. Thus, we have the commutative diagram

0 K0(I) K0(eI) K0(C) 0

0 K0(A) K0( eA) K0(C) 0

◆⇤ e◆⇤ =

Since |||·|||B satisfies the conditions of lemma 2.4, |||·||| eB satisfies the conditions

of corollary 2.2.1. Hence, we have shown that e◆⇤ is an isomorphism. Thus, by

the short 5’s lemma, ◆⇤ is an isomorphism.

Theorem 2.6. An unbounded trace on a C

⇤
-algebra A induces a dimension

function on K0(A).

Proof. By the previous theorem ◆

�1
⇤ is an isomorphism and by claim 1.6.3 ⌧ is

a trace on I. Thus, by theorem 0.2 (dim⌧ � ◆�1
⇤ ) is an algebra homomorphism.
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