A Generalized Dimension Function for K_0 of C^* -Algebras

Matthew Lorentz

Department of Mathematics, University of Hawai'i, Mānoa

Advisor: Rufus Willett

November 19, 2018

This exposition has been guided by John Roe's lecture notes on K-theory. In what follows we develop a generalized dimension function that can assist with analyzing the structure and classification of C^* -algebras.

Note that if τ is a trace on an algebra A then,

$$\tau_n \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{array} \right) = \sum_{j=1}^n \tau(a_{jj})$$

is a trace on $M_n(A)$. If we need to work with matrices of different sizes we stabilize the matrices by adjoining rows and columns of zeros. Thus, we write τ_{∞} and $M_{\infty}(A)$, where $M_{\infty}(A)$ is the direct limit of the connecting maps

$$a \mapsto \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array} \right)$$

and τ_{∞} is the trace on $M_{\infty}(A)$ by the universal property of a direct limit. We denote the unitalization of A by \widetilde{A} . Note that if τ is a trace on A then $\widetilde{\tau} : \widetilde{A} \to \mathbb{F}$ defined by $(a, \lambda) \mapsto \tau(a) + \lambda$ is a trace on \widetilde{A} . Indeed, observe that $\tau((a, \lambda)(b, \mu)) = \tau((ab + \lambda b + \mu a, \lambda \mu)) = \tau(ab) + \lambda \tau(b) + \mu \tau(a) + \lambda \mu = \tau(ba) + \mu \tau(a) + \lambda \tau(b) + \mu \lambda = \tau((b, \mu)(a, \lambda)).$ **Definition 0.1** (The monoid V(A)). We call two projections $p, q \in M_{\infty}(A)$ equivalent if they are Murray-von Neumann equivalent. That is $p \sim q$ if there exists a $v \in M_{\infty}(A)$ such that $p = v^*v$ and $q = vv^*$. Then V(A) is the set of all such equivalence classes of projections where a element in V(A) is denoted by $[\cdot]$. We make V(A) a moniod by defining addition as $[p] + [q] = [p \oplus q]$

Note that, by Wegge-Olsen 5.2.10 and 5.2.12: Murray-von Neumann, unitary, and homotopy equivalence all define the same equivalence classes in $M_{\infty}(A)$. We denote by $K_{00}(A)$ the Grothendieck group which turns the moniod V(A)into a group by considering the formal differences [p] - [q] of the equivalence classes in V(A) in a similar way as the integers are constructed from the natural numbers. See Wegge-Olsen appendix G for a complete construction. The universal property of Grothendieck groups lets us extend a homomorphism $\alpha_* : V(A) \to V(B)$ induced by some morphism $\alpha : A \to B$ to a group homomorphism $\alpha_* : K_{00}(A) \to K_{00}(B)$. The group $K_0(A)$ is defined using this functoriality by

$$K_0(A) := \operatorname{Ker}\left(\pi_* : K_{00}(\widetilde{A}) \to \mathbb{Z}\right).$$

Theorem 0.2. Let \mathbb{F} be a field, and let $add(\mathbb{F})$ be the elements of \mathbb{F} viewed as an additive group. If A is an algebra over the field \mathbb{F} and τ is a trace on A. Then the map $\dim_{\tau} : K_0(A) \to add(\mathbb{F})$ defined by $\dim_{\tau}([p]) = \tau_{\infty}(p)$ is a group homomorphism.

Proof. Note that [p] = [q] in $K_0(\widetilde{A})$ if and only if there is a idempotent r and x, y, with $xy = p \oplus r$ and $yx = q \oplus r$. Thus, $\tilde{\tau}_{\infty}(p) + \tilde{\tau}_{\infty}(r) = \tilde{\tau}_{\infty}(p \oplus r) = \tilde{\tau}_{\infty}(xy) = \tilde{\tau}_{\infty}(yx) = \tilde{\tau}_{\infty}(q \oplus r) = \tilde{\tau}_{\infty}(q) + \tilde{\tau}_{\infty}(r)$. Hence, $\tilde{\tau}_{\infty}(p) = \tilde{\tau}_{\infty}(q)$ and so dim $\tilde{\tau}$ is well defined. Thus, we can define dim $_{\tau}$ as the restriction of dim $\tilde{\tau}$ to $K_0(A)$. That it is a homomorphism follows from linearity.

However, what if we do not have a trace that is defined for every element of A? For instance $A = \mathcal{K}(\ell^2 \mathbb{N})$. For this we develop a method to use an unbounded trace; that is a map τ that is defined on a dense subset of A for which τ is a trace.

1 Unbounded Traces

Definition 1.1 (Tracial Weight). By A^+ we shall mean the positive elements of our C^* -algebra A. That is elements of the form a^*a . A tracial weight on a C*-algebra A is a function $\tau : A^+ \to [0, \infty]$ such that $\tau(\lambda_1 a_1 + \lambda_2 a_2) =$ $\lambda_1 \tau(a_1) + \lambda_2 \tau(a_2)$ for all $\lambda_1, \lambda_2 \ge 0$ and all $a_1, a_2 \in A^+$; and such that $\tau(a^*a) = \tau(aa^*)$ for all $a \in A$.

Definition 1.2 (Lower Semicontinuous). A tracial weight is called *lower semi*continuous if $\tau(\lim_{n\to\infty} a_n) \leq \liminf_{n\to\infty} \tau(a_n)$ for all norm convergent sequences $\{a_n\}$ in A^+ .

Definition 1.3 (Densely Defined). A tracial weight is *densely defined* if the set $\{a \in A^+ : \tau(a) < \infty\}$ is dense in A^+ .

Definition 1.4 (Unbounded Traces). A tracial weight that is lower semicontinuous and is densely defined is called an *unbounded trace*.

Lemma 1.5. If *I* is a dense *-ideal (not necessarily closed) of a C*-algebra *A* then $\Lambda_{I^+} = \{a \in I^+ : ||a|| \le 1\}$ is an upwards directed set. Moreover, if $u_{\alpha} = \alpha \in \Lambda_{I^+}$ then $(u_{\alpha})_{\alpha \in \Lambda_{I^+}}$ is an approximate unit for *A*.

Proof. (This proof is an adaption of Murphy's theorem 3.1.1) First, if $a \in A^+$ then $(1+a) \in \text{Inv}(A)$ by the functional calculus. So if $a \leq b \implies 1+a \leq 1+b$, then by Murphy (2.2.5) $(1+a)^{-1} \geq (1+b)^{-1}$ and so $1-(1+a)^{-1} \leq 1-(1+b)^{-1}$ Note that, $a(1+a)^{-1} = 1-(1+a)^{-1}$, and so

$$a \le b \implies a(1+a)^{-1} \le b(1+b)^{-1}$$
, for all $a, b \in A^+$ (1)

Observe that, by the functional calculus, $a(1 + a)^{-1}$ is positive and $||a(1 + a)^{-1}|| \le 1$ whenever $a \in A^+$. Moreover, if $a \in I^+$ since I is an ideal, $a(1 + a)^{-1} \in I \cap A^+ = I^+$. Thus, $a(1 + a)^{-1} \in \Lambda_{I^+}$ whenever $a \in I^+$. Next, let $a, b \in \Lambda_{I^+}$, and let $a' = a(1 - a)^{-1}$, $b' = b(1 - b)^{-1}$ which both exist and are positive since ||a||, ||b|| < 1. Additionally, $a', b' \in I \cap A^+ = I^+$ since I is an ideal. Note that since $a', (1 + a')^{-1} \in C^*(a, 1)$ which is commutative, $a' = a(1 - a)^{-1} \iff a'(1 - a) = a \iff a' = a + a'a \iff a' = (1 + a')a \iff (1 + a')^{-1}a' = a \iff a = a'(1 + a')^{-1}$. Set $c = (a' + b')(1 + a' + b')^{-1}$ and note that, since I^+ is closed under addition, $c \in \Lambda_{I^+}$. Then since $a' \le a' + b'$, by (1) we have that $a = a'(1 + a')^{-1} \le (a' + b')(1 + a' + b')^{-1} = c$ and similarly $b \le c$. Thus, Λ_{I^+} is an upwards directed set. Moreover, if we set $u_\alpha = \alpha \in \Lambda_{I^+}$, then $(u_\alpha)_{\alpha \in \Lambda_{I^+}}$ is an upwards directed net of positive elements.

Next, since Λ_{A^+} linearly spans A it suffices to show that $a = \lim_{\alpha} u_{\alpha} a = \lim_{\alpha} a u_{\alpha}$ for all $a \in \Lambda_{A^+}$. Let $\epsilon > 0$ be given. Define Ω_a to be the character space of the C^* -algebra generated by a and for $\omega \in \Omega_a$ define $\hat{a}(\omega) = \omega(a)$. By the Gelfand representation, $\varphi : C^*(a) \to C_0(\Omega_a)$, the set $K = \{\omega \in \Omega_a :$ $|\hat{a}(\omega)| \geq \frac{\epsilon^2}{2}$ is compact. Thus, by Urysohn's lemma there exists a continuous function $g: \Omega_a \to [0,1]$ of compact support such that $g(\omega) = 1$ for all $\omega \in K$. Then $||a - \varphi^{-1}(g)a|| = ||\hat{a} - g\hat{a}||_{\infty} < \frac{\epsilon^2}{2}$. Note that $\varphi^{-1}(g) \in \Lambda_{A^+}$. Thus, since Λ_{I^+} is dense in Λ_{A^+} , there exists an $\alpha_0 \in \Lambda_{I^+}$ such that $||\alpha_0 - \varphi^{-1}(g)|| < \frac{\epsilon^2}{2}$. Observe that:

$$\|a - \alpha_0 a\| = \|a - \varphi^{-1}(g)a + \varphi^{-1}(g)a - \alpha_0 a\|$$

$$\leq \|a - \varphi^{-1}(g)a\| + \|\varphi^{-1}(g)a - \alpha_0 a\| \leq \frac{\epsilon^2}{2} + \|a\| \|\varphi^{-1}(g) - \alpha_0\| < \epsilon^2.$$

Then for $\alpha \in \Lambda_{I^+}$ such that $\alpha \ge \alpha_0$, we have $1 - u_\alpha \le 1 - u_{\alpha_0}$ and so by Murphy (2.2.5), $a(1 - u_\alpha)a \le a(1 - u_{\alpha_0})a$. Thus,

$$\begin{aligned} \|a - u_{\alpha}a\|^{2} &= \|(1 - u_{\alpha})a\|^{2} = \left\|(1 - u_{\alpha})^{\frac{1}{2}}(1 - u_{\alpha})^{\frac{1}{2}}a\right\|^{2} \\ &\leq \left\|(1 - u_{\alpha})^{\frac{1}{2}}\right\|^{2} \left\|(1 - u_{\alpha})^{\frac{1}{2}}a\right\|^{2} \leq \left\|(1 - u_{\alpha})^{\frac{1}{2}}a\right\|^{2} \\ &= \left\|a^{*}(1 - u_{\alpha})^{\frac{1}{2}}(1 - u_{\alpha})^{\frac{1}{2}}a\right\| = \|a(1 - u_{\alpha})a\| \leq \|a(1 - u_{\alpha_{0}})a\| \\ &\leq \|a\| \left\|(1 - u_{\alpha_{0}})a\| < \epsilon^{2} \end{aligned}$$

Hence, $||a - u_{\alpha}a|| < \epsilon$ and a similar argument shows that $||a - au_{\alpha}|| < \epsilon$ whenever $\alpha \ge \alpha_0$. Thus, $a = \lim_{\alpha} u_{\alpha}a = \lim_{\alpha} au_{\alpha}$.

Lemma 1.6. Let τ be an unbounded trace on a C*-algebra A. Let $I^+ = \{a \in A^+ : \tau(a) < \infty\}$ and let I be the linear span of I^+ . The following claims will show that I is dense in A and admits a norm $||| \cdot |||$ under which I becomes a Banach algebra. Moreover, $||| \cdot |||$ satisfies the inequality

$$|||xy||| \le ||x|| \, |||y||| + |||x||| \, ||y||$$

Claim 1.6.1. I is a dense *-ideal in A and τ extends uniquely to a linear functional on I which is real on self adjoint elements.

Proof. Recall that every $a \in A$ can be written as a = b + ic where $b, c \in A_{sa}$. Next, let $c \in A_{sa}$ be arbitrary. Then $c^2 = c^*c$ is positive and so $(c^2)^{1/2} = |c| \in A^+$. Let $c^+ = \frac{1}{2}(|c| + c)$, and $c^- = \frac{1}{2}(|c| - c)$. Observe that for $\gamma \in \Omega_c$, $\widehat{c^+}(\gamma) = \frac{1}{2}(|\gamma(c)| + \gamma(c))$ and since $c \in A_{sa}$, $\gamma(c) \in \mathbb{R}$ so $\widehat{c^+} = 0$ or $|\gamma(c)|$. Hence, by the Gelfand representation, $\sigma(c^+) = \widehat{c^+}(\Omega_c) \subset [0,\infty)$. A similar argument shows that $c^- \in A^+$ also. Thus, since $c = c^+ - c^-$, every

self adjoint element of A is the real linear combination of two positive elements. This shows that $\operatorname{span}(A^+) = A$ and since I^+ is dense in A^+ it follows that I is dense in A.

Next, by separating $a \in I$ into its real and imaginary parts to show that linearly extending τ to I is well defined it suffices to show that linearly extending τ to real linear combinations of elements of I^+ is well defined. Suppose that

$$\sum_{k=1}^{m} x_k a_k = \sum_{j=1}^{n} y_j a_j$$

where the x_k 's, y_j 's $\in \mathbb{R}$ and the a_k 's , a_j 's $\in I^+.$ Observe that,

$$\sum_{x_k \in \mathbb{R}^+} x_k a_k + \sum_{x_k \in \mathbb{R}^-} x_k a_k = \sum_{k=1}^m x_k a_k = \sum_{j=1}^n y_j a_j = \sum_{y_j \in \mathbb{R}^+} y_j a_j + \sum_{y_j \in \mathbb{R}^-} y_j a_j$$
$$\iff \sum_{x_k \in \mathbb{R}^+} x_k a_k - \sum_{y_j \in \mathbb{R}^-} y_j a_j = \sum_{y_j \in \mathbb{R}^+} y_j a_j - \sum_{x_k \in \mathbb{R}^-} x_k a_k.$$

Then by definition 1.1 we have

$$\sum_{x_k \in \mathbb{R}^+} x_k \tau(a_k) - \sum_{y_j \in \mathbb{R}^-} y_j \tau(a_j) = \sum_{y_j \in \mathbb{R}^+} y_j \tau(a_j) - \sum_{x_k \in \mathbb{R}^-} x_k \tau(a_k)$$
$$\iff \sum_{x_k \in \mathbb{R}^+} x_k \tau(a_k) + \sum_{x_k \in \mathbb{R}^-} x_k \tau(a_k) = \sum_{y_j \in \mathbb{R}^+} y_j \tau(a_j) + \sum_{y_j \in \mathbb{R}^-} y_j \tau(a_j)$$
and so
$$\sum_{k=1}^m x_k \tau(a_k) = \sum_{j=1}^n y_j \tau(a_j)$$

Thus, linearly extending τ to I is well defined. Moreover, writing $c \in I_{sa}$ as $c = c^+ - c^-$ we have $\tau(c) = \tau(c^+) - \tau(c^-) \in \mathbb{R}$.

To show that I is an ideal we proceed indirectly. First, let

$$J = \{ x \in A : \tau(x^*x) < \infty \}.$$

Note that if $a \leq b$, i.e. $b - a \in A^+$ then $\tau(b) - \tau(a) \in [0, \infty]$ since τ is positive.

Hence, $\tau(a) \leq \tau(b)$. Thus, for $x, y \in J$, the inequality

$$(x+y)^*(x+y) \le (x+y)^*(x+y) + (x-y)^*(x-y) = 2(x^*x+y^*y)$$

Shows that J is closed under addition. Moreover, by the proof of 2.2.5(c) (Murphy), $||a||^2 = ||a^*a|| \ge a^*a$ so by 2.2.5(b)(Murphy) $x^*a^*ax \le ||a||^2 x^*x$. Thus, if $x \in J$ and $a \in A$, then $ax \in J$ and so J is a left ideal. Additionally, since $\tau(x^*x) = \tau(xx^*)$, $x \in J$ implies that $x^* \in J$ and so J is *-closed. Then since J is a left ideal, for $x \in J$, $a^*x^* \in J \implies (a^*x^*)^* = xa \in J$ so J is a two-sided ideal. Next consider $J^2 = \operatorname{span}\{xy : x, y \in J\}$. Clearly J^2 is closed under addition; and since J is a two sided ideal that is *-closed, so is J^2 . Then for $x, y \in J$, let $z_n = i^n x + y$ so that $z_n \in J$. The polarization identity,

$$x^*y = \frac{1}{4}\sum_{n=0}^{3} i^n z_n^* z_n$$

shows that J^2 is the linear combination of elements of I^+ . Hence, $J^2 \subseteq I$. Next, if $a \in I^+$, then $a^{1/2}$ is positive so that $a^{1/2} \in J$ and so $a \in J^2$. Since such elements generate I we have that $I \subseteq J^2$ and so $I = J^2$. Hence, I is a two sided *-ideal

Claim 1.6.2. The ideal I is hereditary; i.e. if $0 \le a \le a'$, then $a' \in I$ implies that $a \in I$.

Proof. Since
$$a \le a'$$
, $a' - a \in A^+$ so, $\tau(a' - a) = \tau(a') - \tau(a) \ge 0$
 $\implies \infty \ge \tau(a') \ge \tau(a) \ge 0.$

Claim 1.6.3 (Roe). The (extended) linear functional τ has the property that $\tau(xy) = \tau(yx)$ whenever $x \in I$ and $y \in A$. In particular, it is a trace (in the algebraic sense) on I.

Proof. Since $x \in I$, $x = \sum_{k=1}^{n} \lambda_k x_k$ where $x_k \in I^+$. Writing y = a + ib where $a, b \in A_{sa}$, we have that; $yx = \sum_{k=1}^{n} (\lambda_k a x_k + i\lambda_k b x_k)$, and $xy = \sum_{k=1}^{n} (\lambda_k x_k a + i\lambda_k x_k b)$. Since τ is linear without loss of generality we may assume that $x \in I^+$ and $a \in A_{sa}$. First consider the case where $x, y \in J$. Then the polarization identity gives us that,

$$\tau(xy) = \tau(x^*y) = \tau(yx^*) = \tau(yx)$$

since $\tau(z_n^* z_n) = \tau(z_n z_n^*)$ by definition. For the general case, since $x \in I^+$ it follows that $x^{1/2} \in J$. Since J is a two sided ideal $yx^{1/2} \in J$ and $x^{1/2}y \in J$. Thus, using the previous result twice we have that

$$\tau(xy) = \tau(x^{1/2}x^{1/2}y) = \tau(x^{1/2}yx^{1/2}) = \tau(yx^{1/2}x^{1/2}) = \tau(xy).$$

Claim 1.6.4. For all $x, y \in J$, $\langle \cdot, \cdot \rangle_{HS\tau}$ defined by $\langle x, y \rangle_{HS\tau} = \tau(x^*y)$ is a semi-inner product. Moreover, $\|\cdot\|_{HS\tau} = |\langle \cdot, \cdot \rangle_{HS\tau}|^{1/2}$ has the property that $\|ax\|_{HS\tau} \leq \|a\| \|x\|_{HS\tau}$ for all $x \in J$ and $a \in A$.

Proof. First we show that $\langle \cdot, \cdot \rangle_{HS\tau}$ is a semi-inner product. Let $\alpha, \beta \in \mathbb{C}$ and let $x, y, z \in J$. Observe that:

- 1. $\tau((\alpha x + \beta y)^* z) = \tau((\overline{\alpha}x^* + \overline{\beta}y^*)z) = \overline{\alpha}\tau(x^*z) + \overline{\beta}\tau(y^*z)$
- 2. $\tau(x^*(\alpha y + \beta z)) = \alpha \tau(x^*y) + \beta \tau(x^*z)$
- 3. $\tau(x^*x) \ge 0$ by the definition of τ .
- 4. Let z_n be defined as before. Since $z_n^* z_n \in I^+$ it follows that $\tau(z_n^* z_n) = \overline{\tau(z_n^* z_n)}$. Expanding both for n = 1, 2, some algebra shows that $\overline{\tau(x^* y)} = \tau(y^* x)$.

Lastly,

$$x^*a^*ax \le \|a\|^2 x^*x \implies \tau\left((ax)^*ax\right) \le \|a\|^2 \tau(x^*x) \implies \|ax\|_{HS\tau} \le \|a\| \|x\|_{HS\tau}$$

Claim 1.6.5. If $a \in I$ then $|a| = (a^*a)^{\frac{1}{2}} \in I$. Moreover, for all $a \in I$ and $b \in A$ we have that $|\tau(ab)| \leq ||b|| \tau(|a|)$.

Proof. We use semicontinuity and an approximation argument. First consider the case where $a \in I^+$. We have that,

$$|\tau(ab)| = |\langle a^{1/2}, a^{1/2}b\rangle| \le \left\|a^{1/2}\right\|_{HS\tau} \left\|a^{1/2}b\right\|_{HS\tau} \le \left\|a^{1/2}\right\|_{HS\tau}^2 \|b\| = \tau(a) \|b\|$$
(2)

Next, let $a \in I$. since $a = \sum_{k=1}^{n} \lambda_k a_k$ where $a_k \in I^+$ for all k. We have that,

$$|\tau(ab)| = \left|\sum_{k=1}^{n} \lambda_k \tau(a_k b)\right| \le \sum_{k=1}^{n} |\lambda_k| \tau(a_k) \|b\| = C \|b\|$$
(3)

where the last inequality is given by (2) and C > 0 is a constant depending on a. Now, for $a \in I$ let $w_n = a(1/n + a^*a)^{1/2}$. Since $a \in I$ and I is an ideal, $w_n \in I$. Define $h_n : \sigma(a^*a) \to \mathbb{R}$ by $h_n(x) = (1/n + x)^{-1/2}x$ where $\sigma(a)$ is the spectrum of a. Then $w_n^*a = h_n(a^*a)$, so $\sigma(w_n^*a) = h_n(\sigma(a^*a)) \subseteq [0,\infty)$. Thus, $\{w_n^*a\}$ is a sequence of positive elements. Now consider, $g_n : \sigma(a^*a) \to \mathbb{R}$ defined by $g_n(x) = (1/n + x)^{-1/2}x - x^{1/2}$. Observe that $\lim_{n\to\infty} g_n = 0$, so there exists an N such that $|g_n| < \epsilon$ whenever $n \ge N$. Hence, $\sigma(g_n(a^*a)) = g_n(\sigma(a^*a)) \subseteq (-\epsilon, \epsilon)$ whenever $n \ge N$ and since $g_n(a^*a)$ is self-adjoint, w_n^*a converges in norm to |a|. By inequality (3) the sequence $\tau(w_n^*a)$ is bounded, so by lower semicontinuity, $\tau(|a|) < \infty$. Thus, $|a| \in I^+ \subset I$

To show that $|\tau(ab)| \leq ||b|| \tau(|a|)$ for all $a \in I$, $b \in A$ we first note that $||w_n|| \leq 1$ for all n. Indeed, consider the continuous functions $f_n : \sigma(a^*a) \to \mathbb{R}$ defined by $f_n(x) = (\frac{1}{n} + x)^{-\frac{1}{2}}x(\frac{1}{n} + x)^{-\frac{1}{2}}$. Then for all $n, 0 \leq f_n < 1$, and so $\sigma(f_n(a^*a)) = f_n(\sigma(a^*a)) \subseteq [0, 1)$. Moreover, since $f_n(a^*a) = w_n^*w_n \in A_{sa}$, $||w_n^*w_n|| \in [0, 1]$ and so, $||w_n|| \leq 1$ for all n. Next, let $\epsilon > 0$ be given. Let $a \in I$ and $b \in A$ be fixed but arbitrary. Then, since I is dense in A, we may choose $b' \in I$ such that

$$\|b' - b\| < \min\left\{\frac{\epsilon}{2\tau(|a|)}, \frac{\epsilon}{2C}\right\}.$$
(4)

Notice that, by (3), the function $\tau_{b'} : A \to \mathbb{C}$ defined by $c \mapsto \tau(cb')$ is a bounded linear functional on A and so is continuos. Thus, for any sequence $\{c_n\}$ in A norm converging to c we have that

$$\tau(cb') = \lim_{n \to \infty} \tau(c_n b') \tag{5}$$

Observe that, $||w_n|a| - a||^2 = ||(w_n|a| - a)^*(w_n|a| - a)|| \to 0$ by using the functional calculus as we did with g_n . Thus, using (5) we have,

$$|\tau(ab')| = \lim_{n \to \infty} |\tau(w_n|a|b')| \stackrel{1.6.3}{=} \lim_{n \to \infty} |\tau(|a|b'w_n)| \stackrel{(2)}{\leq} \tau(|a|) ||b'|| \sup_n ||w_n|| \le \tau(|a|) ||b'||$$

Observe that,

$$\left| |\tau(ab)| - |\tau(ab')| \right| \le \left| \tau \left(a(b-b') \right) \right| \stackrel{(3)}{\le} C \left\| b - b' \right\| \stackrel{(4)}{<} \frac{\epsilon}{2}$$

so that, $|\tau(ab)| - \frac{\epsilon}{2} < |\tau(ab')|$. Also,

$$|\tau(|a|) ||b'|| - \tau(|a|) ||b|| \le \tau(|a|) ||b'-b|| < \frac{\epsilon}{2}$$

so that, $\tau(|a|) \|b'\| < \tau(|a|) \|b\| + \frac{\epsilon}{2}$. Hence, $|\tau(ab')| \leq \tau(|a|) \|b'\|$ implies that $|\tau(ab)| < \tau(|a|) \|b\| + \epsilon$. Then, since ϵ was arbitrary we obtain the desired inequality.

Claim 1.6.6. The inequality $\tau(|a+b|) \leq \tau(|a|) + \tau(|b|)$ holds for all $a, b \in I$.

Proof. Note that for all x such that $||x|| \leq 1$, $|\tau(ax)| \leq \tau(|a|) ||x|| \leq \tau(|a|)$ by 1.6.5. Thus, $\sup_{\|x\|\leq 1} |\tau(ax)| \leq \tau(|a|)$. Next, since $\|w_n^*\| = \|w_n\| \leq 1$ lower semicontinuity gives us that $\tau(|a|) \leq \liminf_{n\to\infty} \tau(w_n^*a) \leq \sup_{\|x\|\leq 1} |\tau(ax)|$. Hence,

$$\tau(|a|) = \sup_{\|x\| \le 1} |\tau(ax)|$$
(6)

Thus,

$$\tau(|a+b|) = \sup_{\|x\| \le 1} |\tau(ax) + \tau(bx)| \le \sup_{\|x\| \le 1} |\tau(ax)| + \sup_{\|x\| \le 1} |\tau(bx)| = \tau(|a|) + \tau(|b|)$$

Remark. Note that 1.6.6 implies that,

$$\tau(|ab|) = \sup_{\|x\| \le 1} |\tau(abx)| \stackrel{1.6.5}{\le} \sup_{\|x\| \le 1} \tau(|a|) \|b\| \|x\| = \tau(|a|) \|b\|$$
(7)

Remark. For any $a \in A$ using the functional calculus on $C^*(a^*a, 1)$, it follows that, $(a^*a)^{\frac{1}{2}} - (\frac{1}{n} + a^*a)^{-\frac{1}{2}}a^*a \in A^+$ for all n so that $\tau(w_n^*a) \leq \tau(|a|)$. Thus, $\limsup_{n \to \infty} \tau(w_n^*a) \leq \tau(|a|) \leq \liminf_{n \to \infty} \tau(w_n^*a)$ by lower semicontinuity. Hence,

$$\lim_{n \to \infty} \tau(w_n^* a) = \tau(|a|) \tag{8}$$

for all $a \in A$.

Claim 1.6.7. If τ is an unbounded trace; the inequality $\tau(|a+b|) \leq \tau(|a|) + \tau(|b|)$ holds for all $a, b \in A$.

Proof. Let $(u_{\alpha})_{\alpha \in \Lambda_{I^+}}$ be the approximate unit from lemma 1.5, and let $x_{\alpha} = u_{\alpha}a$. Note that $x_{\alpha} \in I$ since I is a two sided ideal and $u_{\alpha} \in I$ for all α . Also

note that, $||u_{\alpha}||^2 \leq 1$. Thus,

$$|x_{\alpha}|^{2} = x_{\alpha}^{*}x_{\alpha} = a^{*}u_{\alpha}^{2}a \leq a^{*} \left\|u_{\alpha}^{2}\right\|a \leq |a|^{2}$$

by Murphy (2.2.5). Thus, since taking roots of positive elements preserves inequalities, $|x_{\alpha}| \leq |a|$ for all α , and so

$$\limsup_{\alpha \in \Lambda_{I^+}} \tau(|x_{\alpha}|) \le \tau(|a|).$$
(9)

Next, since $x_{\alpha} \xrightarrow{\|\cdot\|} a$ and $a \mapsto |a|$ is continuous by Rødam (1.2.5), it follows that $|x_{\alpha}| \xrightarrow{\|\cdot\|} |a|$. So by (9) and lower semicontinuity,

$$\tau(|a|) \le \liminf_{\alpha \in \Lambda_{I^+}} \tau(|x_{\alpha}|).$$

Thus, we have that

$$\lim_{\alpha \in \Lambda_{I^+}} \tau(|x_{\alpha}|) = \tau(|a|).$$
(10)

Similarly, if we let $y_{\alpha} = u_{\alpha}b$, then $\lim_{\alpha \in \Lambda_{I^+}} \tau(|y_{\alpha}|) = \tau(|b|)$. Observe that, $x_{\alpha} + y_{\alpha} = u_{\alpha}(a + b)$ so using the continuity of the map $a \mapsto |a|$ once more we have $|x_{\alpha} + y_{\alpha}| \xrightarrow{\|\cdot\|} |a + b|$. Hence, by lower semicontinuity and 1.6.6 we have that,

$$\tau(|a+b|) \le \liminf_{\alpha \in \Lambda_{I^+}} \tau(|x_\alpha + y_\alpha|) \le \liminf_{\alpha \in \Lambda_{I^+}} \left(\tau(|x_\alpha|) + \tau(|y_\alpha|)\right) = \tau(|a|) + \tau(|b|).$$

Claim 1.6.8. For $a \in A$, if $|a| \in I$, then $|a^*| \in I$.

Proof. Define w_n as before. Let $\epsilon > 0$, and let

$$g_n(x) = \left(\frac{1}{n} + x\right)^{-\frac{1}{2}} x^{\frac{1}{2}} \left(\frac{1}{n} + x\right)^{-\frac{1}{2}}$$

on $[0, ||a||^2]$. Then by Stone-Weierstrass, for each *n* there exists a polynomial f_n such that $|g_n(x) - f_n(x)| < \frac{\epsilon}{2||a||^2}$ for all $x \in [0, ||a||^2]$. Note that for any polynomial *f* we have that

$$af(a^*a)a^* = a\left(\sum_{k=1}^{\ell} a_k(a^*a)^k\right)a^* = \sum_{k=1}^{\ell} a_ka(a^*a)^ka^*$$

$$=\sum_{k=1}^{\ell}a_{k}(aa^{*})^{k}aa^{*} = \left(\sum_{k=1}^{\ell}a_{k}(aa^{*})^{k}\right)aa^{*} = f(aa^{*})aa^{*}$$

Observe that,

$$\|ag_n(a^*a)a^* - g_n(aa^*)aa^*\|$$

= $\|ag_n(a^*a)a^* - af(a^*a)a^* + f(aa^*)aa^* - g_n(aa^*)aa^*\|$
 $\leq \|a\| \|g_n(a^*a) - f_n(a^*a)\| \|a\| + \|a\|^2 \|g_n(aa^*) - f_n(aa^*)\| < \epsilon.$

Thus,

$$w_n |a| w_n^* = ag_n(a^*a)a^* = g_n(aa^*)aa^* = \left(\frac{1}{n} + aa^*\right)^{-1}(aa^*)^{\frac{3}{2}}$$

and so $w_n |a| w_n^* \xrightarrow{\|\cdot\|} |a^*|$ by the functional calculus. Hence, by lower semicontinuity,

$$\tau(|a^*|) \leq \liminf_{n \to \infty} \tau(w_n |a| w_n^*) \stackrel{1.6.3}{=} \liminf_{n \to \infty} \tau(|a| w_n^* w_n)$$
$$\stackrel{1.6.5}{\leq} \liminf_{n \to \infty} \tau(|a|) ||w_n^* w_n|| \leq \tau(|a|)$$

and so $|a^*| \in I$.

Claim 1.6.9. For $a \in A$, if $|a| \in I$, then $a \in I$.

Proof. First, if $a \in A_{sa}$ then $|a| = a^+ + a^-$ where a^+ and a^- are defined in the proof of 1.6.1. Then, $|a| - a^+ = a^- \in A^+$ and $|a| - a^- = a^+ \in A^+$. Thus, since I is hereditary by 1.6.2, $a^+, a^- \in I$, and so $a^+ - a^- = a \in I$.

Next, for a general $a \in A$ we separate a into its real and imaginary parts, a = x + iy. Then,

$$2\tau(|x|) = \tau(|x + iy + x - iy|) \stackrel{1.6.7}{\leq} \tau(|a|) + \tau(|a^*|) < \infty,$$

by the previous claim. Thus, by the self-adjoint case, $x \in I$ and similarly for yand so $a = x + iy \in I$.

Claim 1.6.10. The map $||| \cdot ||| : I \to [0, \infty)$ given by $|||a||| = ||a|| + \tau(|a|)$ is a sub-multiplicitive norm for I which makes I a non-unital Banach algebra. Moreover, this norm satisfies the inequality $|||xy||| \le ||x|| |||y||| + |||x||| ||y||$.

Proof. First we show that $||| \cdot |||$ is a norm. Observe that:

1. $|||\lambda a||| = ||\lambda a|| + \tau(|\lambda a|) \le |\lambda| \left(||a|| + \tau(|a|) \right)$ since τ is linear.

- 2. Since $||a|| \ge 0$ and $\tau(|a|) \ge 0$ (since $|a| \in I^+$), $|||a||| \ge 0$. Moreover, if |||a||| = 0 then ||a|| = 0 by positivity and so a = 0 since $||\cdot||$ is a norm. Next, $0 \in I$ whenever I is nonempty. Then since $|0| = (0^*0)^{\frac{1}{2}} = 0$, $\tau(|0|) = \tau(|0|) + \tau(|0|)$ implies $\tau(|0|) = 0$ so that |||0||| = 0.
- 3. $|||a+b||| = ||a+b|| + \tau(|a+b|) \stackrel{1.6.6}{\leq} ||a|| + ||b|| + \tau(|a|) + \tau(|b|) = |||a||| + |||b|||$
- 4. $|||ab||| = ||ab|| + \tau(|ab|) \le ||a|| ||b|| + \tau(|ab|) \stackrel{(7)}{\le} ||a|| ||b|| + \tau(|a|) ||b||$ = $|||a||| ||b|| \le |||a|||(||b|| + \tau(|b|)) = |||a||| |||b|||.$

To show completeness suppose that $\{a_n\}$ is a Cauchy sequence under $||| \cdot |||$. Then given $\epsilon > 0$ there exists an N > 0 such that

$$|||a_n - a_m||| = ||a_n - a_m|| + \tau(|a_n - a_m|) < \epsilon$$

whenever $n, m \geq N$. This means that $\{a_n\}$ is Cauchy under $\|\cdot\|$ and so converges to some $a \in A$. Additionally, this implies that $\tau(|a_n - a_m|) < \epsilon$ whenever $m, n \geq N$. Moreover, 1.6.6 implies that $\tau(|a_n|) - \tau(|a_N|) < \tau(|a_n - a_N|)$. Putting this together we have that $\tau(|a_n|) < \tau(|a_N|) + \epsilon$ for all $n \geq N$. Thus, the sequence $\{\tau(|a_n|)\}$ is bounded so by lower semicontinuity $|a| \in I$. Hence, by 1.6.9, $a \in I$. Moreover, since $\tau(|a_N - a_n|) < \epsilon$ whenever $n \geq N$ lower semicontinuity once more gives $\tau(|a_n - a|) \to 0$. Thus, $a_n \to a$ under $|||\cdot|||$ and our space is complete.

Finally, $|||ab||| = ||ab|| + \tau(|ab|) \le ||a|| ||b|| + \tau(|ab|) \stackrel{(7)}{\le} ||a|| ||b|| + \tau(|a|) ||b|| = |||a||| ||b|| \le |||a||| ||b|| + ||a|| |||b|||$ so the inequality is satisfied.

Remark. Note that if A is unital then I = A since the invertibles are open and I is a dense ideal. Thus, our unbounded trace is just a trace and so what we have developed is only interesting in the non-unital case.

2 K-theory and Dense Subalgebras

Now that we have a dense subalgebra I which is the domain of an unbounded trace τ we would like to know: Under what conditions a dense subalgebra will have the same K-theory as its parent algebra. Moreover, does our dense subalgebra I meet those conditions? For now we will assume that our parent algebra A is unital which, as we will see, will not make a difference when we switch to the K-theory in the non-unital case.

Lemma 2.1. For any dense unital subalgebra B of a unital Banach algebra A the following are equivalent.

- i) B is inverse closed in A.
- ii) Every maximal right ideal \mathfrak{n} of B is a relatively closed subset. That is, $\mathfrak{n} = B \cap \overline{\mathfrak{n}}.$
- iii) Every irreducible B-module N extends to an A-module M; that is, N is a B-submodule of the restriction of M to B.

Proof. i) \implies ii): Since *B* is inverse closed in *A*, $\mathbf{n} \cap \text{Inv}(A) = \emptyset$ for every maximal right ideal \mathbf{n} of *B*. By definition, every neighborhood of $a \in \overline{\mathbf{n}}$ contains a point of \mathbf{n} . Since Inv(A) is open, $\overline{\mathbf{n}} \cap \text{Inv}(A) = \emptyset$. Next, we show that $\overline{\mathbf{n}}$ is a right ideal in *A*. Since *B* is dense in *A* and addition and multiplication are continuous, given any $\alpha a + \beta b$ where $\alpha, \beta \in \overline{\mathbf{n}}$ we may construct a sequence

$$\alpha_n a_n + \beta_n b_n$$
 such that $\|\alpha_n a_n + \beta_n b_n - (\alpha a + \beta b)\| < 2^{-n}$

where $\alpha_n, \beta_n \in \mathfrak{n}$ and $a_n, b_n \in B$. Thus, $\alpha a + \beta b \in \overline{\mathfrak{n}}$ so that $\overline{\mathfrak{n}}$ is an ideal in A. Then it follows that $\overline{\mathfrak{n}} \cap B$ is an ideal in B. Moreover, since $\overline{\mathfrak{n}} \cap B$ does not contain the unit it is a proper ideal of B. Thus, by maximality, $\overline{\mathfrak{n}} \cap B = \mathfrak{n}$ and so \mathfrak{n} is relatively closed.

 $ii) \Longrightarrow iii)$: Suppose that N is an irreducible B-module. Define $\varphi_n : B \to N$ by $a \mapsto na$ where $n \in N$. Then for any nonzero $n \in N$ we have that $\varphi_n(1) = n \neq 0$ so that φ_n is nonzero whenever $n \neq 0$. Fix a nonzero $n \in N$. Since the image of φ_n is a submodule of the irreducible module N, we must have that φ_n is surjective. Let **n** be the kernel of φ_n . Then ψ_n , the map induced by φ_n on $\mathfrak{n}^{\mathbb{N}}_{\mathcal{N}}$, is an isomorphism. Hence, **n** is a maximal right ideal of B.

Next, let $\mathfrak{m} = \overline{\mathfrak{n}}$. Then by *ii*), $\mathfrak{n} = \mathfrak{m} \cap B$. So, by the second isomorphism theorem,

$$N \cong_{\mathfrak{m} \cap B} \overset{B}{\searrow} \mathfrak{m}^{\mathfrak{m} + B} \subseteq \mathfrak{m}^{A} = M.$$

 $iii) \implies i$: We show the contrapositive. Suppose that B is <u>not</u> inverse closed in A. That is, there exists an $a \in B$ that is invertible in A but not invertible in B. Since a is invertible in A, a cannot have a right inverse in B by the uniqueness of inverses. Consider the right ideal generated by a, (a) = aB. Since a is not right invertible $\mathbb{1} \notin (a)$ so that (a) is a proper right ideal. Thus, (a) is contained in a maximal right ideal, say $\mathfrak{n} \in B$. Then $\mathfrak{n} \setminus B$ is an irreducible *B*-module. Letting $[\mathbb{1}] \in \mathfrak{n} \setminus B$ be the class of the identity of *B* we have that,

$$[\mathbb{1}]a = a = 0$$
, i.e. $(\mathfrak{n} + \mathbb{1})a = \mathfrak{n} + a = \mathfrak{n}$ since $a \in \mathfrak{n}$ (11)

Note that for any A-module M, since $a \in \text{Inv}(A)$ the map $M \to M$ defined by $m \mapsto ma$ is injective. Thus, if \mathbb{R}^{B} were contained in the restriction of M to B, by (11) we would have that $[\mathbb{1}] \mapsto 0$. Since this map is injective that would mean $[\mathbb{1}] = 0$, a contradiction.

Corollary 2.1.1. Let B be a dense unital subalgebra of the unital Banach algebra A (with the same unit). Then $M_n(B)$ is inverse closed in $M_n(A)$ whenever B is inverse closed in A for all n.

Proof. Let \mathbf{e}_{ij} be the $n \times n$ matrix with 1_A in the ij'th entry and zeros elsewhere and let id_n be the identity matrix in $M_n(B)$. Note that for any $M_n(B)$ -module, say $W, W = id_n(W) = \sum_{i=1}^n \mathbf{e}_{ii}(W)$. Moreover, if $x \in \mathbf{e}_{ii}(W) \cap \mathbf{e}_{jj}(W)$ where $i \neq j$, then $\mathbf{e}_{ii}y = x = \mathbf{e}_{jj}y'$ for some $y, y' \in W$. Thus, $0 = \mathbf{e}_{ii}\mathbf{e}_{jj}y' =$ $\mathbf{e}_{ii}\mathbf{e}_{ii}y = \mathbf{e}_{ii}y = x$. So $\mathbf{e}_{ii}(W) \cap \mathbf{e}_{jj}(W) = \{0\}$ whenever $i \neq j$. Furthermore, $\mathbf{e}_{ii}(W) \cong \mathbf{e}_{jj}(W) \cong N$ for some B-module N by means of the shift operator. Hence, any $M_n(B)$ -module W is the direct sum $N^{\bigoplus n}$ for some B-module N. Next, note that any submodule $V \leq W$ is of the form $L^{\bigoplus n}$ for some B-module L which is a submodule of N. Thus, $V \leq W$ if and only if $L \leq N$ and so; any $M_n(B)$ -module $W = N^{\bigoplus n}$ is irreducible if and only if N is an irreducible B-module.

By supposition B is inverse closed in A, so by the previous lemma every irreducible B-module N extends to a A-module M. Since every irreducible $M_n(B)$ -module is of the form $N^{\bigoplus n}$ where N is a irreducible B-module it follows that $N^{\bigoplus n}$ extends to the $M_n(A)$ -module $M^{\bigoplus n}$. Thus, by the previous lemma once more, $M_n(B)$ is inverse closed in $M_n(A)$.

Theorem 2.2. Let A be a unital C^* -algebra and let $B \subseteq A$ be a dense unital Banach *-subalgebra such that

- *i)* There is a topology on B stronger then the topology B inherits from A under which B is a Banach algebra.
- ii) B is inverse closed in A.

Then the natural map induced by inclusion, $\iota_* : K_0(B) \to K_0(A)$, is an isomorphism.

proof of surjectivity. First we show that the map is surjective. Note that it suffices to show that for an element of the form $[p] \in K_0(A)$ there exists a $[q] \in K_0(B)$ such that [p] = [q] since such elements generate $K_0(A)$ and $K_0(B)$. Thus, for $[p] \in K_0(A)$, $p = (a_{ij})$ is a projection in $M_n(A)$ for some n. Since B is dense in A, given $\epsilon > 0$ there exists a b_{ij} for each a_{ij} such that $||a_{ij} - b_{ij}|| < \frac{\epsilon}{n^2}$. Let $y = (b_{ij}) \in M_n(B)$. Then by the triangle inequality, $||p - y|| \leq \sum_{i,j=1}^{n} ||a_{ij} - b_{ij}|| < \epsilon$. Take $x = \frac{1}{2}(y + y^*)$, then

$$||x-p|| = \left\|\frac{1}{2}(y-p+y^*-p^*)\right\| \le \frac{1}{2}||y-p|| + \frac{1}{2}||(y-p)^*|| \le \epsilon.$$

Thus, for any $\epsilon > 0$ there exists a self-adjoint $x \in M_n(B)$ such that $||x - p|| < \epsilon$. Note that $||x|| \le \epsilon + ||p||$; and so,

$$\begin{aligned} \|x^2 - x\| &= \|x^2 - p + p - x\| \le \|x^2 - p^2\| + \|p - x\| = \|(x + p)(x - p)\| + \|x - p\| \\ &< \epsilon \|x + p\| + \epsilon \le \epsilon(\epsilon + \|p\| + \|p\|) + \epsilon = \epsilon^2 + \epsilon(2\|p\| + 1) < \epsilon^2 + 3\epsilon. \end{aligned}$$

Hence, we may take ϵ small enough so that $||x^2 - x|| < \eta$ where $\eta \in (0, \frac{1}{4}]$. Thus, by the functional calculus, we may take η small enough that $\sigma(x) \subseteq (-\frac{1}{n}, \frac{1}{n}) \cup (1 - \frac{1}{n}, 1 + \frac{1}{n}), n \ge 4$. Let q be the spectral projection of x corresponding to the interval $(1 - \frac{1}{n}, 1 + \frac{1}{n}) = K_n$; i.e. $\chi_{K_n}(x)$. Then q is a projection since

$$\chi_{K_n}(t) = (\chi_{K_n}(t))^2 = \overline{\chi_{K_n}(t)}$$
 for any $t \in \sigma(x)$.

Moreover, $|t - \chi_{K_n}(t)| < \frac{1}{n}$ for all $t \in \sigma(x)$ so that $||x - q|| < \frac{1}{n}$. Then $||q - p|| \le ||q - x|| + ||x - p|| < \frac{1}{n} + \epsilon$. Taking $\epsilon \le \frac{1}{n}$ we have that $||p - q|| < \frac{2}{n}$. Take n = 4. Note that if p and q are conjugate (possibly after stabilization) they are both representatives of the same class in $K_0(A)$. Let u = pq + (1 - p)(1 - q). Then pu = pq = uq so to show that [p] = [q] we need only show that u is invertible. Observe that, u = pq + 1 - p - q + pq = 1 + p - q - 2p + 2pq = 1 + (1 - 2p)(p - q), and since p is a projection the functional calculus shows that ||1 - 2p|| = 1. Hence,

$$||1 - u|| \le ||1 - 2p|| ||p - q|| < \frac{1}{2}$$

so that u is invertible and [p] = [q] in $K_0(A)$.

It remains to be shown that $q \in M_n(B)$. Let Γ be a smooth closed convex curve in the resolvent set of x encircling $(\frac{1}{2}, \frac{3}{2})$ but not $(-\frac{1}{2}, \frac{1}{2})$ parameterized by t on [a, b]. For instance, the circle centered at 1 of radius 1/2 given by z(t) = $1 + \frac{1}{2}e^{it}$ for $t \in [0, 2\pi]$. Form a partition of [a, b], i.e. $a = t_0 < t_1 < \cdots < t_n = b$, where $t_{j-1} \leq t'_j \leq t_j$. Consider the limit of the Riemann sum

$$\frac{1}{2\pi i} \sum_{j=1}^{n} \left(\mathbb{1}z(t'_j) - x \right)^{-1} [z(t_j) - z(t_{j-1})]$$
(12)

as $|P| := \max\{t_j - t_{j-1} : j = 1, \cdots, n\} \to 0$. Note that this sum converges in the norm of B to the line integral of the Banach space valued function $(\mathbbm{1}z(t) - x)^{-1}$, i.e. $\frac{1}{2\pi i} \int_{\Gamma} (\mathbbm{1}z(t) - x)^{-1} dz$. Indeed, Since since $\mathbbm{1}, x \in B$ and B is inverse closed, we have that $(\mathbbm{1}z(t) - x)^{-1} \in B$. Then since inversion is continuous on the invertible elements of B (Murphy 1.2.3) and [a, b] is compact, $t \mapsto (\mathbbm{1}z(t) - x)^{-1}$ is uniformly continuous. Hence, there exists a δ such that $\left\| (\mathbbm{1}z(t_j) - x)^{-1} - (\mathbbm{1}z(t_i) - x)^{-1} \right\|_B < \frac{\epsilon}{|\Gamma|}$ whenever $|t_j - t_i| < \delta$ Thus, given any two partitions P and Q such that $|P|, |Q| < \delta$ we have that,

$$\left\| \sum_{j=1}^{n} \left(z(t'_{j}) - x \right)^{-1} [z(t_{j}) - z(t_{j-1})] - \sum_{i=1}^{m} \left(z(t'_{i}) - x \right)^{-1} [z(t_{i}) - z(t_{i-1})] \right\|_{B}$$
$$< \frac{\epsilon}{|\Gamma|} \sum_{k=1}^{\ell} |z(t_{k}) - z(t_{k-1})| \le \epsilon$$

where $\{t_k\}$ is the refinement of the partitions P, Q.

Next, let φ be any multiplicative linear functional on the C^* -algebra generated by x and $\mathbb{1}$. Since $\chi_K(x)$ is the limit of polynomials in x and $\mathbb{1}$, we see that $\varphi(\chi_K(x)) = \chi_K(\varphi(x))$. Also, by considering (12) it follows that,

$$\varphi\Big(\frac{1}{2\pi i} \int_{\Gamma} (\mathbb{1}z(t) - x)^{-1} dz\Big) = \frac{1}{2\pi i} \int_{\Gamma} (z(t) - \varphi(x))^{-1} dz.$$

Hence,

$$\varphi(\chi_K(x)) = \chi_K(\varphi(x)) = \frac{1}{2\pi i} \int_{\Gamma} (z(t) - \varphi(x))^{-1} dz = \varphi\left(\frac{1}{2\pi i} \int_{\Gamma} (\mathbb{1}z(t) - x)^{-1} dz\right)$$

Thus, since multiplicative linear functionals separate points,

$$q = \chi_K(x) = \frac{1}{2\pi i} \int_{\Gamma} (z(t) - x)^{-1} dz$$

so that $q \in M_n(B)$ and our map is surjective.

proof of injectivity. Suppose that $[p_1], [p_2]$ are in $K_0(B)$ such that $[p_1] = [p_2]$ in $K_0(A)$. We need to show that $[p_1] = [p_2]$ in $K_0(B)$. Since $[p_1] = [p_2]$ in $K_0(A)$ there exists a projection $r \in M_m(A)$ and a $n \in \mathbb{N}$ such that (possibly by passing to a larger matrix by adding zeros) $(p_1 \oplus r)$ is conjugate to $(p_2 \oplus r)$ in $M_n(A)$. That is, there is a $u \in GL_n(A)$ such that $u(p_1 \oplus r)u^{-1} = (p_2 \oplus r)$. Let $\epsilon > 0$ be given. Note that we may construct a projection $r_0 \in M_m(B)$ as we did for q in the proof of surjectivity such that

$$||r - r_0|| < \min\left\{\frac{\epsilon}{4}, \frac{\epsilon}{4||u|| ||u^{-1}||}\right\}$$

Let

$$\gamma_{1} = \frac{\epsilon}{4 \|p_{1} \oplus r_{0}\| \|u^{-1}\|}, \ \gamma_{2} = \frac{\epsilon \|u^{-1}\|}{4 \|u\| \|u^{-1}\| \|p_{1} \oplus r_{0}\| + \epsilon} = \frac{\epsilon}{4(\|u\| + \gamma_{1}) \|p_{1} \oplus r_{0}\|}$$

Next, by the continuity of inversion, there exists a $\delta > 0$ such that $||u^{-1} - v^{-1}|| < \gamma_2$ whenever $||u - v|| < \delta$. Since $GL_n(A)$ is open in $M_n(A)$, by the density of B in A we can choose a $v \in GL_n(B)$ such that $||u - v|| < \min\{\delta, \gamma_1\}$. Then since $||v|| < ||u|| + \gamma_1$ we have that,

$$\begin{aligned} \left\| v(p_{1} \oplus r_{0})v^{-1} - (p_{2} \oplus r_{0}) \right\| \\ &\leq \left\| v(p_{1} \oplus r_{0})(v^{-1} - u^{-1}) \right\| + \left\| (v - u)(p_{1} \oplus r_{0})u^{-1} \right\| \\ &+ \left\| u \Big((p_{1} \oplus r_{0}) - (p_{1} \oplus r) \Big) u^{-1} \right\| + \left\| (p_{2} \oplus r) - (p_{2} \oplus r_{0}) \right\| \\ &< (\left\| u \right\| + \gamma_{1}) \left\| p_{1} \oplus r_{0} \right\| \left\| v^{-1} - u^{-1} \right\| + \left\| v - u \right\| \left\| p_{1} \oplus r_{0} \right\| \left\| u^{-1} \right\| \\ &+ \left\| u \right\| \left\| u^{-1} \right\| \left\| r_{0} - r \right\| + \left\| r_{0} - r \right\| < \epsilon. \end{aligned}$$

Next, let $q = v(p_1 \oplus r_0)v^{-1}$, $p = p_2 \oplus r_0$, and let w = pq + (1-p)(1-q). By the same argument as in the surjective case, pw = wq and w is invertible whenever $\epsilon < 1$. Note that $w, w^{-1} \in M_n(B)$ since $q, p \in M_n(B)$. Thus, since $p_2 \oplus r_0 = (wv)(p_1 \oplus r_0)(wv)^{-1}$ we have that $[p_1 \oplus r_0] = [p_2 \oplus r_0] \implies [p_1] = [p_2]$ in $K_0(B)$ and so our map is injective. \Box

Corollary 2.2.1. Let A be a unital C^* -algebra and let $B \subseteq A$ be a dense unital *-subalgebra which becomes a Banach algebra in some norm $\|\cdot\|_B \ge \|\cdot\|_A$. Suppose that there is some constant $C \ge 1$ such that

$$\|ab\|_{B} \le C\Big(\|a\|_{A} \|b\|_{B} + \|a\|_{B} \|b\|_{A}\Big) \quad \text{for all} \quad a, b \in B.$$
(13)

Then the natural map induced by inclusion $K_0(B) \to K_0(A)$, is an isomorphism.

Proof. By the previous theorem we need only show inverse closure. For an arbitrary $a \in B$, applying (13) to $x = y = a^n$ we have $||a^{2n}||_B \leq 2C ||a^n||_B ||a^n||_A$. Note that if $p(x) = x^2$ then since $p(\sigma(a)) = \sigma(p(a))$, if $\lambda \in \sigma(a)$ then $\lambda^2 \in \sigma(p(a))$. Thus, if $r_B(a)$ is the spectral radius of $a \in B$, then $r_B(a^2) = (r_B(a))^2$. Hence,

$$(r_B(a))^2 = \lim_{n \to \infty} \left\| a^{2n} \right\|_B^{\frac{1}{n}} \le \lim_{n \to \infty} (2C)^{\frac{1}{n}} \left\| a^n \right\|_B^{\frac{1}{n}} \left\| a^n \right\|_A^{\frac{1}{n}} = r_B(a)r_A(a),$$

so that $r_B(a) \leq r_A(a)$ by the spectral radius formula. Next, if an element $c \in B$ is not invertible in A then it is not invertible in B so that $\sigma_A(a) \subseteq \sigma_B(a)$ and so $r_A(a) \leq r_B(a)$. Therefore, $r_B(a) = r_A(a)$.

Now if a is invertible in A then a^*a is invertible in A. Since a^*a is positive and invertible, $\sigma_A(a^*a) \subseteq [\eta, ||a||^2]$ for some $\eta \in \mathbb{R}_{>0}$. Let $\lambda > ||a||^2$. Observe that,

$$\mu \in \sigma_A(\lambda - a^*a) \iff \mu - \lambda \in \sigma_A(-a^*a) \iff \lambda - \mu \in \sigma_A(a^*a) \subseteq [\eta, ||a||^2].$$

It follows that, $||a||^2 \ge \lambda - \mu > ||a||^2 - \mu$, so $\mu > 0$. Moreover, $\lambda - \mu \ge \eta > 0$ so that for all $\mu \in \sigma_A(\lambda - a^*a)$, $\lambda > \mu > 0$. Hence, $r_B(\lambda - a^*a) = r_A(\lambda - a^*a) < \lambda$, that is $\lambda \notin \sigma_B(\lambda - a^*a)$ and so $a^*a = \lambda - (\lambda - a^*a)$ is invertible in *B*. Suppose *c* is the inverse of a^*a in *B*. Then ca^* is a left inverse of *a* in *B*. Since ca^* is a left inverse of *a* in *A* also, it must be the inverse in *A* and so *a* is invertible in *B*. Thus, *B* is inverse closed.

Now we return to the case where A and B are non-unital.

Lemma 2.3. Suppose that B is a nonunital Banach *-algebra and A is a nonunital C^* -algebra containing B. If B is dense in A then \widetilde{B} is dense in \widetilde{A} . Moreover, if $\|\cdot\|_B \geq \|\cdot\|_A$ then $\|\cdot\|_{\widetilde{B}} \geq \|\cdot\|_{\widetilde{A}}$.

Proof. Let $\epsilon > 0$ and (a, λ) be given. Since *B* is dense in *A*, given any $a \in A$ there exists a $b \in B$ such that $||a - b||_A < \epsilon$. Thus, $||(a, \lambda) - (b, \lambda)||_{\widetilde{A}} = ||(a, 0) - (b, 0)||_{\widetilde{A}} = ||a - b||_A < \epsilon$, since the inclusion $a \mapsto (a, 0)$ is an isometric *-homomorphism.

Next, recall that if B is a Banach algebra, setting $||(b,\lambda)||_{\widetilde{B}} = ||b||_{B} + |\lambda|$ makes \widetilde{B} a Banach algebra. Observe that, $||(b,\lambda)||_{\widetilde{A}} \le ||(b,0)||_{\widetilde{A}} + ||(0,\lambda)||_{\widetilde{A}} =$ $||b||_{A} + |\lambda| \le ||b||_{B} + |\lambda| = ||(b,\lambda)||_{\widetilde{B}}.$ **Lemma 2.4.** Suppose that B is a nonunital Banach *-algebra such that B is dense in A, a nonunital C*-algebra. Suppose also that

$$||ab||_{B} \le ||a||_{A} ||b||_{B} + ||a||_{B} ||b||_{A} \text{ for all } a, b \in B.$$
(14)

Then for $\lambda, \mu \in \mathbb{C}$ we have,

$$\|(a,\lambda)(b,\mu)\|_{\widetilde{B}} \le 6\Big(\|(a,\lambda)\|_{\widetilde{A}} \|(b,\mu)\|_{\widetilde{B}} + \|(a,\lambda)\|_{\widetilde{B}} \|(b,\mu)\|_{\widetilde{A}}\Big)$$

Proof. First, let $x \in A_{sa}$ and $r \in \mathbb{R}$. Define $f_r(y) = y + r$, which is continuous on $\sigma_{\widetilde{A}}((x,0))$. Moreover, $f_r((x,0)) = (x,r)$, and so

$$\sigma_{\widetilde{A}}((x,r)) = \sigma_{\widetilde{A}}(f_r((x,0))) = f_r(\sigma_{\widetilde{A}}((x,0))) = \sigma_A(x) + r.$$

Let $b = \sup \sigma_A(x)$, and let $a = \inf \sigma_A(x)$. Then since $x \in A_{sa}$ and A is nonunital, $\|x\|_A = -a$ or b. Moreover, since $(x, r) \in \widetilde{A}_{sa}$,

$$\|(x,r)\|_{\widetilde{A}} = \max\{\left|\sup \sigma_{\widetilde{A}}((x,r))\right|, \left|\inf \sigma_{\widetilde{A}}((x,r))\right|\}$$
$$= \max\{\left|\sup \sigma_{A}(x) + r\right|, \left|\inf \sigma_{A}(x) + r\right|\}$$

Observe that,

$$\left\| \left(x, \frac{a-b}{2} - a\right) \right\|_{\widetilde{A}} = \left| \sup \sigma_A(x) + \frac{a-b}{2} - a \right| = \left| \inf \sigma_A(x) + \frac{a-b}{2} - a \right| = \frac{b-a}{2}$$

Next, if $r > \frac{a-b}{2} - a$ then $b + r > \frac{b-a}{2} \ge 0$, so that

$$\left\| \left(x, \frac{a-b}{2} - a \right) \right\|_{\widetilde{A}} = \frac{b-a}{2} < b+r \le \| (x,r) \|_{\widetilde{A}}.$$

On the other hand, if $r < \frac{a-b}{2} - a$ then $a + r < \frac{a-b}{2} \le 0$, so that

$$\left\| \left(x, \frac{a-b}{2} - a \right) \right\|_{\widetilde{A}} = \frac{b-a}{2} < |a+r| \le \| (x,r) \|_{\widetilde{A}}.$$

Note that,

$$\frac{\|x\|_A - a}{2} \geq \frac{1}{2} \, \|x\|_A \ \text{ and that } \frac{b + \|x\|_A}{2} \geq \frac{1}{2} \, \|x\|_A \, .$$

Thus, since $\|x\|_A = -a$ or b, we have that

$$\|x\|_{A} \le b - a = 2 \left\| \left(x, \frac{a - b}{2} - a\right) \right\|_{\widetilde{A}} \le 2 \left\| (x, r) \right\|_{\widetilde{A}}$$

for all $x \in A_{sa}$ and all $r \in \mathbb{R}$.

Next, for a general element $a \in A$ we write a = x + iy Then for $\lambda \in \mathbb{C}$ by the self adjoint case we have,

$$||a||_A \le ||x||_A + ||y||_A \le 2 ||(x, \operatorname{Re}(\lambda))||_{\widetilde{A}} + 2 ||(y, \operatorname{Im}(\lambda))||_{\widetilde{A}}$$

Since

$$\|(x, \operatorname{Re}(\lambda))\|_{\widetilde{A}} = \frac{1}{2} \|(a, \lambda) + (a, \lambda)^*\|_{\widetilde{A}} \le \|(a, \lambda)\|_{\widetilde{A}}$$

and similarly, $\|(y,\operatorname{Im}(\lambda))\|_{\widetilde{A}} \leq \|(a,\lambda)\|_{\widetilde{A}},$ we have that,

$$\|a\|_{A} \leq 4 \,\|(a,\lambda)\|_{\widetilde{A}} \text{ for all } a \in A \text{ and all } \lambda \in \mathbb{C}$$

$$(15)$$

Note that $\lambda \in \sigma(a, \lambda)$ since $(0, \lambda) - (a, \lambda) = (a, 0)$ is not invertible. Thus, for all $\lambda \in \mathbb{C}$ and all $a \in A$ we have that,

$$|\lambda| \le \|(a,\lambda)\|_{\widetilde{A}} \tag{16}$$

Putting all this together we have,

$$\begin{split} \|(a,\lambda)(b,\mu)\|_{\widetilde{B}} &\leq \|ab+\lambda b+a\mu\|_{B}+|\lambda\mu| \leq \|ab\|+|\lambda| \|b\|_{B}+|\mu| \|a\|_{B}+|\lambda\mu| \\ &\leq (\|4\|_{A} \|b\|_{B}+\|a\|_{B} \|b\|_{A}+|\lambda| \|b\|_{B}+|\mu| \|a\|_{B}+|\lambda\mu| \\ &= \|a\|_{B} \left(\|b\|_{A}+|\mu|\right)+\|b\|_{B} \left(\|a\|_{A}+|\lambda|\right)+|\lambda\mu| \\ &\leq \left(\|a\|_{B}+|\lambda|\right) \left(\|b\|_{A}+|\mu|\right)+\left(\|b\|_{B}+|\mu|\right) \left(\|a\|_{A}+|\lambda|\right)+|\lambda\mu| \\ &\leq \left(\|a,\lambda)\|_{\widetilde{B}} \left(4\|(b,\mu)\|_{\widetilde{A}}+|\mu|\right)+\|(b,\mu)\|_{\widetilde{B}} \left(4\|(a,\lambda)\|_{\widetilde{A}}+|\lambda|\right)+|\lambda\mu| \\ &\leq 4 \left(\|(a,\lambda)\|_{\widetilde{B}} \|(b,\mu)\|_{\widetilde{A}}+\|(b,\mu)\|_{\widetilde{B}} \|(a,\lambda)\|_{\widetilde{A}}\right)+\|(a,\lambda)\|_{\widetilde{B}}+|\lambda|\|(b,\mu)\|_{\widetilde{B}}+|\lambda|\|\mu| \\ &\leq 6 \left(\|(a,\lambda)\|_{\widetilde{B}} \|(b,\mu)\|_{\widetilde{A}}+\|(b,\mu)\|_{\widetilde{B}} \|(a,\lambda)\|_{\widetilde{A}}\right)+\|(a,\lambda)\|_{\widetilde{A}} \left(\|b\|_{B}+|\mu|\right) \\ &= 6 \left(\|(a,\lambda)\|_{\widetilde{B}} \|(b,\mu)\|_{\widetilde{A}}+\|(b,\mu)\|_{\widetilde{A}}+\|(b,\mu)\|_{\widetilde{B}} \|(a,\lambda)\|_{\widetilde{A}}\right), \end{split}$$

as was to be shown.

Theorem 2.5. Let I be the ideal obtained from a unbounded trace τ from the previous section. Then the natural map induced by inclusion, $\iota_* : K_0(I) \to K_0(A)$, is an isomorphism.

Proof. Note that the inclusion maps $\iota : I \hookrightarrow A$ and $\tilde{\iota} : \tilde{I} \hookrightarrow \tilde{A}$ are algebra homomorphisms. Thus, we have the commutative diagram

Since $||| \cdot |||_B$ satisfies the conditions of lemma 2.4, $||| \cdot |||_{\widetilde{B}}$ satisfies the conditions of corollary 2.2.1. Hence, we have shown that $\widetilde{\iota_*}$ is an isomorphism. Thus, by the short 5's lemma, ι_* is an isomorphism.

Theorem 2.6. An unbounded trace on a C^* -algebra A induces a dimension function on $K_0(A)$.

Proof. By the previous theorem ι_*^{-1} is an isomorphism and by claim 1.6.3 τ is a trace on *I*. Thus, by theorem 0.2 $(\dim_{\tau} \circ \iota_*^{-1})$ is an algebra homomorphism.

21