# A Generalized Dimension Function for $K_{0}$ of $C^{*}$-Algebras 

Matthew Lorentz<br>Department of Mathematics, University of Hawai'i, Mānoa<br>Advisor: Rufus Willett

November 19, 2018

This exposition has been guided by John Roe's lecture notes on $K$-theory. In what follows we develop a generalized dimension function that can assist with analyzing the structure and classification of $C^{*}$-algebras.

Note that if $\tau$ is a trace on an algebra $A$ then,

$$
\tau_{n}\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)=\sum_{j=1}^{n} \tau\left(a_{j j}\right)
$$

is a trace on $M_{n}(A)$. If we need to work with matrices of different sizes we stabilize the matrices by adjoining rows and columns of zeros. Thus, we write $\tau_{\infty}$ and $M_{\infty}(A)$, where $M_{\infty}(A)$ is the direct limit of the connecting maps

$$
a \mapsto\left(\begin{array}{cc}
a & 0 \\
0 & 0
\end{array}\right)
$$

and $\tau_{\infty}$ is the trace on $M_{\infty}(A)$ by the universal property of a direct limit. We denote the unitalization of $A$ by $\widetilde{A}$. Note that if $\tau$ is a trace on $A$ then $\widetilde{\tau}: \widetilde{A} \rightarrow \mathbb{F}$ defined by $(a, \lambda) \mapsto \tau(a)+\lambda$ is a trace on $\widetilde{A}$. Indeed, observe that $\tau((a, \lambda)(b, \mu))=\tau((a b+\lambda b+\mu a, \lambda \mu))=\tau(a b)+\lambda \tau(b)+\mu \tau(a)+\lambda \mu=$ $\tau(b a)+\mu \tau(a)+\lambda \tau(b)+\mu \lambda=\tau((b, \mu)(a, \lambda))$.

Definition 0.1 (The monoid $V(A))$. We call two projections $p, q \in M_{\infty}(A)$ equivalent if they are Murray-von Neumann equivalent. That is $p \sim q$ if there exists a $v \in M_{\infty}(A)$ such that $p=v^{*} v$ and $q=v v^{*}$. Then $V(A)$ is the set of all such equivalence classes of projections where a element in $V(A)$ is denoted by $[\cdot]$. We make $V(A)$ a moniod by defining addition as $[p]+[q]=[p \oplus q]$

Note that, by Wegge-Olsen 5.2.10 and 5.2.12: Murray-von Neumann, unitary, and homotopy equivalence all define the same equivalence classes in $M_{\infty}(A)$. We denote by $K_{00}(A)$ the Grothendieck group which turns the moniod $V(A)$ into a group by considering the formal differences $[p]-[q]$ of the equivalence classes in $V(A)$ in a similar way as the integers are constructed from the natural numbers. See Wegge-Olsen appendix $G$ for a complete construction. The universal property of Grothendieck groups lets us extend a homomorphism $\alpha_{*}: V(A) \rightarrow V(B)$ induced by some morphism $\alpha: A \rightarrow B$ to a group homomorphism $\alpha_{*}: K_{00}(A) \rightarrow K_{00}(B)$. The group $K_{0}(A)$ is defined using this functoriality by

$$
K_{0}(A):=\operatorname{Ker}\left(\pi_{*}: K_{00}(\widetilde{A}) \rightarrow \mathbb{Z}\right)
$$

Theorem 0.2. Let $\mathbb{F}$ be a field, and let add $(\mathbb{F})$ be the elements of $\mathbb{F}$ viewed as an additive group. If $A$ is an algebra over the field $\mathbb{F}$ and $\tau$ is a trace on $A$. Then the map $\operatorname{dim}_{\tau}: K_{0}(A) \rightarrow \operatorname{add}(\mathbb{F})$ defined by $\operatorname{dim}_{\tau}([p])=\tau_{\infty}(p)$ is a group homomorphism.

Proof. Note that $[p]=[q]$ in $K_{0}(\widetilde{A})$ if and only if there is a idempotent $r$ and $x, y$, with $x y=p \oplus r$ and $y x=q \oplus r$. Thus, $\widetilde{\tau}_{\infty}(p)+\widetilde{\tau}_{\infty}(r)=\widetilde{\tau}_{\infty}(p \oplus r)=$ $\widetilde{\tau}_{\infty}(x y)=\widetilde{\tau}_{\infty}(y x)=\widetilde{\tau}_{\infty}(q \oplus r)=\widetilde{\tau}_{\infty}(q)+\widetilde{\tau}_{\infty}(r)$. Hence, $\widetilde{\tau}_{\infty}(p)=\widetilde{\tau}_{\infty}(q)$ and so $\operatorname{dim}_{\tilde{\tau}}$ is well defined. Thus, we can define $\operatorname{dim}_{\tau}$ as the restriction of $\operatorname{dim}_{\tilde{\tau}}$ to $K_{0}(A)$. That it is a homomorphism follows from linearity.

However, what if we do not have a trace that is defined for every element of $A$ ? For instance $A=\mathcal{K}\left(\ell^{2} \mathbb{N}\right)$. For this we develop a method to use an unbounded trace; that is a map $\tau$ that is defined on a dense subset of $A$ for which $\tau$ is a trace.

## 1 Unbounded Traces

Definition 1.1 (Tracial Weight). By $A^{+}$we shall mean the positive elements of our $C^{*}$-algebra $A$. That is elements of the form $a^{*} a$. A tracial weight on a $\mathrm{C}^{*}$-algebra $A$ is a function $\tau: A^{+} \rightarrow[0, \infty]$ such that $\tau\left(\lambda_{1} a_{1}+\lambda_{2} a_{2}\right)=$
$\lambda_{1} \tau\left(a_{1}\right)+\lambda_{2} \tau\left(a_{2}\right)$ for all $\lambda_{1}, \lambda_{2} \geq 0$ and all $a_{1}, a_{2} \in A^{+}$; and such that $\tau\left(a^{*} a\right)=$ $\tau\left(a a^{*}\right)$ for all $a \in A$.

Definition 1.2 (Lower Semicontinuous). A tracial weight is called lower semicontinuous if $\tau\left(\lim _{n \rightarrow \infty} a_{n}\right) \leq \liminf _{n \rightarrow \infty} \tau\left(a_{n}\right)$ for all norm convergent sequences $\left\{a_{n}\right\}$ in $A^{+}$.

Definition 1.3 (Densely Defined). A tracial weight is densely defined if the set $\left\{a \in A^{+}: \tau(a)<\infty\right\}$ is dense in $A^{+}$.

Definition 1.4 (Unbounded Traces). A tracial weight that is lower semicontinuous and is densely defined is called an unbounded trace.

Lemma 1.5. If $I$ is a dense *-ideal (not necessarily closed) of a $C^{*}$-algebra A then $\Lambda_{I^{+}}=\left\{a \in I^{+}:\|a\| \leq 1\right\}$ is an upwards directed set. Moreover, if $u_{\alpha}=\alpha \in \Lambda_{I^{+}}$then $\left(u_{\alpha}\right)_{\alpha \in \Lambda_{I^{+}}}$is an approximate unit for $A$.

Proof. (This proof is an adaption of Murphy's theorem 3.1.1) First, if $a \in A^{+}$ then $(1+a) \in \operatorname{Inv}(A)$ by the functional calculus. So if $a \leq b \Longrightarrow 1+a \leq 1+b$, then by Murphy $(2.2 .5)(1+a)^{-1} \geq(1+b)^{-1}$ and so $1-(1+a)^{-1} \leq 1-(1+b)^{-1}$ Note that, $a(1+a)^{-1}=1-(1+a)^{-1}$, and so

$$
\begin{equation*}
a \leq b \Longrightarrow a(1+a)^{-1} \leq b(1+b)^{-1}, \text { for all } a, b \in A^{+} \tag{1}
\end{equation*}
$$

Observe that, by the functional calculus, $a(1+a)^{-1}$ is positive and $\left\|a(1+a)^{-1}\right\|$ $\leq 1$ whenever $a \in A^{+}$. Moreover, if $a \in I^{+}$since $I$ is an ideal, $a(1+a)^{-1} \in$ $I \cap A^{+}=I^{+}$. Thus, $a(1+a)^{-1} \in \Lambda_{I^{+}}$whenever $a \in I^{+}$. Next, let $a, b \in \Lambda_{I^{+}}$, and let $a^{\prime}=a(1-a)^{-1}, b^{\prime}=b(1-b)^{-1}$ which both exist and are positive since $\|a\|,\|b\|<1$. Additionally, $a^{\prime}, b^{\prime} \in I \cap A^{+}=I^{+}$since $I$ is an ideal. Note that since $a^{\prime},\left(1+a^{\prime}\right)^{-1} \in C^{*}(a, 1)$ which is commutative, $a^{\prime}=a(1-a)^{-1} \Longleftrightarrow$ $a^{\prime}(1-a)=a \Longleftrightarrow a^{\prime}=a+a^{\prime} a \Longleftrightarrow a^{\prime}=\left(1+a^{\prime}\right) a \Longleftrightarrow\left(1+a^{\prime}\right)^{-1} a^{\prime}=$ $a \Longleftrightarrow a=a^{\prime}\left(1+a^{\prime}\right)^{-1}$. Set $c=\left(a^{\prime}+b^{\prime}\right)\left(1+a^{\prime}+b^{\prime}\right)^{-1}$ and note that, since $I^{+}$ is closed under addition, $c \in \Lambda_{I^{+}}$. Then since $a^{\prime} \leq a^{\prime}+b^{\prime}$, by (1) we have that $a=a^{\prime}\left(1+a^{\prime}\right)^{-1} \leq\left(a^{\prime}+b^{\prime}\right)\left(1+a^{\prime}+b^{\prime}\right)^{-1}=c$ and similarly $b \leq c$. Thus, $\Lambda_{I^{+}}$is an upwards directed set. Moreover, if we set $u_{\alpha}=\alpha \in \Lambda_{I^{+}}$, then $\left(u_{\alpha}\right)_{\alpha \in \Lambda_{I^{+}}}$is an upwards directed net of positive elements.

Next, since $\Lambda_{A^{+}}$linearly spans $A$ it suffices to show that $a=\lim _{\alpha} u_{\alpha} a=$ $\lim _{\alpha} a u_{\alpha}$ for all $a \in \Lambda_{A^{+}}$. Let $\epsilon>0$ be given. Define $\Omega_{a}$ to be the character space of the $C^{*}$-algebra generated by $a$ and for $\omega \in \Omega_{a}$ define $\hat{a}(\omega)=\omega(a)$. By the Gelfand representation, $\varphi: C^{*}(a) \rightarrow C_{0}\left(\Omega_{a}\right)$, the set $K=\left\{\omega \in \Omega_{a}\right.$ :
$\left.|\hat{a}(\omega)| \geq \frac{\epsilon^{2}}{2}\right\}$ is compact. Thus, by Urysohn's lemma there exists a continuos function $g: \Omega_{a} \rightarrow[0,1]$ of compact support such that $g(\omega)=1$ for all $\omega \in K$. Then $\left\|a-\varphi^{-1}(g) a\right\|=\|\hat{a}-g \hat{a}\|_{\infty}<\frac{\epsilon^{2}}{2}$. Note that $\varphi^{-1}(g) \in \Lambda_{A^{+}}$. Thus, since $\Lambda_{I^{+}}$is dense in $\Lambda_{A^{+}}$, there exists an $\alpha_{0} \in \Lambda_{I^{+}}$such that $\left\|\alpha_{0}-\varphi^{-1}(g)\right\|<\frac{\epsilon^{2}}{2}$. Observe that:

$$
\begin{gathered}
\left\|a-\alpha_{0} a\right\|=\left\|a-\varphi^{-1}(g) a+\varphi^{-1}(g) a-\alpha_{0} a\right\| \\
\leq\left\|a-\varphi^{-1}(g) a\right\|+\left\|\varphi^{-1}(g) a-\alpha_{0} a\right\| \leq \frac{\epsilon^{2}}{2}+\|a\|\left\|\varphi^{-1}(g)-\alpha_{0}\right\|<\epsilon^{2} .
\end{gathered}
$$

Then for $\alpha \in \Lambda_{I+}$ such that $\alpha \geq \alpha_{0}$, we have $1-u_{\alpha} \leq 1-u_{\alpha_{0}}$ and so by Murphy (2.2.5), $a\left(1-u_{\alpha}\right) a \leq a\left(1-u_{\alpha_{0}}\right) a$. Thus,

$$
\begin{gathered}
\left\|a-u_{\alpha} a\right\|^{2}=\left\|\left(1-u_{\alpha}\right) a\right\|^{2}=\left\|\left(1-u_{\alpha}\right)^{\frac{1}{2}}\left(1-u_{\alpha}\right)^{\frac{1}{2}} a\right\|^{2} \\
\leq\left\|\left(1-u_{\alpha}\right)^{\frac{1}{2}}\right\|^{2}\left\|\left(1-u_{\alpha}\right)^{\frac{1}{2}} a\right\|^{2} \leq\left\|\left(1-u_{\alpha}\right)^{\frac{1}{2}} a\right\|^{2} \\
=\left\|a^{*}\left(1-u_{\alpha}\right)^{\frac{1}{2}}\left(1-u_{\alpha}\right)^{\frac{1}{2}} a\right\|=\left\|a\left(1-u_{\alpha}\right) a\right\| \leq\left\|a\left(1-u_{\alpha_{0}}\right) a\right\| \\
\leq\|a\|\left\|\left(1-u_{\alpha_{0}}\right) a\right\|<\epsilon^{2}
\end{gathered}
$$

Hence, $\left\|a-u_{\alpha} a\right\|<\epsilon$ and a similar argument shows that $\left\|a-a u_{\alpha}\right\|<\epsilon$ whenever $\alpha \geq \alpha_{0}$. Thus, $a=\lim _{\alpha} u_{\alpha} a=\lim _{\alpha} a u_{\alpha}$.

Lemma 1.6. Let $\tau$ be an unbounded trace on a $C^{*}$-algebra $A$. Let
$I^{+}=\left\{a \in A^{+}: \tau(a)<\infty\right\}$ and let $I$ be the linear span of $I^{+}$. The following claims will show that $I$ is dense in $A$ and admits a norm $\||\cdot|\|$ under which $I$ becomes a Banach algebra. Moreover, |||||| satisfies the inequality

$$
|\|x y\|\|\leq\| x\||\|y|\|+|\|x \mid\|\|y\| .
$$

Claim 1.6.1. $I$ is a dense *-ideal in $A$ and $\tau$ extends uniquely to a linear functional on $I$ which is real on self adjoint elements.

Proof. Recall that every $a \in A$ can be written as $a=b+i c$ where $b, c \in$ $A_{s a}$. Next, let $c \in A_{s a}$ be arbitrary. Then $c^{2}=c^{*} c$ is positive and so $\left(c^{2}\right)^{1 / 2}=|c| \in A^{+}$. Let $c^{+}=\frac{1}{2}(|c|+c)$, and $c^{-}=\frac{1}{2}(|c|-c)$. Observe that for $\gamma \in \Omega_{c}, \widehat{c^{+}}(\gamma)=\frac{1}{2}(|\gamma(c)|+\gamma(c))$ and since $c \in A_{s a}, \gamma(c) \in \mathbb{R}$ so $\widehat{c^{+}}=0$ or $|\gamma(c)|$. Hence, by the Gelfand representation, $\sigma\left(c^{+}\right)=\widehat{c^{+}}\left(\Omega_{c}\right) \subset[0, \infty)$. A similar argument shows that $c^{-} \in A^{+}$also. Thus, since $c=c^{+}-c^{-}$, every
self adjoint element of $A$ is the real linear combination of two positive elements. This shows that $\operatorname{span}\left(A^{+}\right)=A$ and since $I^{+}$is dense in $A^{+}$it follows that $I$ is dense in $A$.

Next, by separating $a \in I$ into its real and imaginary parts to show that linearly extending $\tau$ to $I$ is well defined it suffices to show that linearly extending $\tau$ to real linear combinations of elements of $I^{+}$is well defined. Suppose that

$$
\sum_{k=1}^{m} x_{k} a_{k}=\sum_{j=1}^{n} y_{j} a_{j}
$$

where the $x_{k}$ 's, $y_{j}$ 's $\in \mathbb{R}$ and the $a_{k}$ 's,$a_{j}$ 's $\in I^{+}$. Observe that,

$$
\begin{gathered}
\sum_{x_{k} \in \mathbb{R}^{+}} x_{k} a_{k}+\sum_{x_{k} \in \mathbb{R}^{-}} x_{k} a_{k}=\sum_{k=1}^{m} x_{k} a_{k}=\sum_{j=1}^{n} y_{j} a_{j}=\sum_{y_{j} \in \mathbb{R}^{+}} y_{j} a_{j}+\sum_{y_{j} \in \mathbb{R}^{-}} y_{j} a_{j} \\
\Longleftrightarrow \sum_{x_{k} \in \mathbb{R}^{+}} x_{k} a_{k}-\sum_{y_{j} \in \mathbb{R}^{-}} y_{j} a_{j}=\sum_{y_{j} \in \mathbb{R}^{+}} y_{j} a_{j}-\sum_{x_{k} \in \mathbb{R}^{-}} x_{k} a_{k} .
\end{gathered}
$$

Then by definition 1.1 we have

$$
\begin{gathered}
\sum_{x_{k} \in \mathbb{R}^{+}} x_{k} \tau\left(a_{k}\right)-\sum_{y_{j} \in \mathbb{R}^{-}} y_{j} \tau\left(a_{j}\right)=\sum_{y_{j} \in \mathbb{R}^{+}} y_{j} \tau\left(a_{j}\right)-\sum_{x_{k} \in \mathbb{R}^{-}} x_{k} \tau\left(a_{k}\right) \\
\Longleftrightarrow \sum_{x_{k} \in \mathbb{R}^{+}} x_{k} \tau\left(a_{k}\right)+\sum_{x_{k} \in \mathbb{R}^{-}} x_{k} \tau\left(a_{k}\right)=\sum_{y_{j} \in \mathbb{R}^{+}} y_{j} \tau\left(a_{j}\right)+\sum_{y_{j} \in \mathbb{R}^{-}} y_{j} \tau\left(a_{j}\right) \\
\text { and so } \sum_{k=1}^{m} x_{k} \tau\left(a_{k}\right)=\sum_{j=1}^{n} y_{j} \tau\left(a_{j}\right)
\end{gathered}
$$

Thus, linearly extending $\tau$ to $I$ is well defined. Moreover, writing $c \in I_{s a}$ as $c=c^{+}-c^{-}$we have $\tau(c)=\tau\left(c^{+}\right)-\tau\left(c^{-}\right) \in \mathbb{R}$.

To show that $I$ is an ideal we proceed indirectly. First, let

$$
J=\left\{x \in A: \tau\left(x^{*} x\right)<\infty\right\}
$$

Note that if $a \leq b$, i.e. $b-a \in A^{+}$then $\tau(b)-\tau(a) \in[0, \infty]$ since $\tau$ is positive.

Hence, $\tau(a) \leq \tau(b)$. Thus, for $x, y \in J$, the inequality

$$
(x+y)^{*}(x+y) \leq(x+y)^{*}(x+y)+(x-y)^{*}(x-y)=2\left(x^{*} x+y^{*} y\right)
$$

Shows that $J$ is closed under addition. Moreover, by the proof of 2.2.5(c) (Murphy), $\|a\|^{2}=\left\|a^{*} a\right\| \geq a^{*} a$ so by $2.2 .5(\mathrm{~b})$ (Murphy) $x^{*} a^{*} a x \leq\|a\|^{2} x^{*} x$. Thus, if $x \in J$ and $a \in A$, then $a x \in J$ and so $J$ is a left ideal. Additionally, since $\tau\left(x^{*} x\right)=\tau\left(x x^{*}\right), x \in J$ implies that $x^{*} \in J$ and so $J$ is $*$-closed. Then since $J$ is a left ideal, for $x \in J, a^{*} x^{*} \in J \Longrightarrow\left(a^{*} x^{*}\right)^{*}=x a \in J$ so $J$ is a two-sided ideal. Next consider $J^{2}=\operatorname{span}\{x y: x, y \in J\}$. Clearly $J^{2}$ is closed under addition; and since $J$ is a two sided ideal that is $*$-closed, so is $J^{2}$. Then for $x, y \in J$, let $z_{n}=i^{n} x+y$ so that $z_{n} \in J$. The polarization identity,

$$
x^{*} y=\frac{1}{4} \sum_{n=0}^{3} i^{n} z_{n}^{*} z_{n}
$$

shows that $J^{2}$ is the linear combination of elements of $I^{+}$. Hence, $J^{2} \subseteq I$. Next, if $a \in I^{+}$, then $a^{1 / 2}$ is positive so that $a^{1 / 2} \in J$ and so $a \in J^{2}$. Since such elements generate $I$ we have that $I \subseteq J^{2}$ and so $I=J^{2}$. Hence, $I$ is a two sided *-ideal

Claim 1.6.2. The ideal $I$ is hereditary; i.e. if $0 \leq a \leq a^{\prime}$, then $a^{\prime} \in I$ implies that $a \in I$.

Proof. Since $a \leq a^{\prime}, a^{\prime}-a \in A^{+}$so, $\tau\left(a^{\prime}-a\right)=\tau\left(a^{\prime}\right)-\tau(a) \geq 0$ $\Longrightarrow \infty \geq \tau\left(a^{\prime}\right) \geq \tau(a) \geq 0$.

Claim 1.6.3 (Roe). The (extended) linear functional $\tau$ has the property that $\tau(x y)=\tau(y x)$ whenever $x \in I$ and $y \in A$. In particular, it is a trace (in the algebraic sense) on $I$.

Proof. Since $x \in I, x=\sum_{k=1}^{n} \lambda_{k} x_{k}$ where $x_{k} \in I^{+}$. Writing $y=a+i b$ where $a, b \in$ $A_{s a}$, we have that; $y x=\sum_{k=1}^{n}\left(\lambda_{k} a x_{k}+i \lambda_{k} b x_{k}\right)$, and $x y=\sum_{k=1}^{n}\left(\lambda_{k} x_{k} a+i \lambda_{k} x_{k} b\right)$. Since $\tau$ is linear without loss of generality we may assume that $x \in I^{+}$and $a \in A_{s a}$. First consider the case where $x, y \in J$. Then the polarization identity gives us that,

$$
\tau(x y)=\tau\left(x^{*} y\right)=\tau\left(y x^{*}\right)=\tau(y x)
$$

since $\tau\left(z_{n}^{*} z_{n}\right)=\tau\left(z_{n} z_{n}^{*}\right)$ by definition. For the general case, since $x \in I^{+}$it follows that $x^{1 / 2} \in J$. Since $J$ is a two sided ideal $y x^{1 / 2} \in J$ and $x^{1 / 2} y \in J$. Thus, using the previous result twice we have that

$$
\tau(x y)=\tau\left(x^{1 / 2} x^{1 / 2} y\right)=\tau\left(x^{1 / 2} y x^{1 / 2}\right)=\tau\left(y x^{1 / 2} x^{1 / 2}\right)=\tau(x y)
$$

Claim 1.6.4. For all $x, y \in J,\langle\cdot, \cdot\rangle_{H S \tau}$ defined by $\langle x, y\rangle_{H S \tau}=\tau\left(x^{*} y\right)$ is a semi-inner product. Moreover, $\|\cdot\|_{H S \tau}=\left|\langle\cdot, \cdot\rangle_{H S \tau}\right|^{1 / 2}$ has the property that $\|a x\|_{H S \tau} \leq\|a\|\|x\|_{H S \tau}$ for all $x \in J$ and $a \in A$.

Proof. First we show that $\langle\cdot, \cdot\rangle_{H S \tau}$ is a semi-inner product. Let $\alpha, \beta \in \mathbb{C}$ and let $x, y, z \in J$. Observe that:

1. $\tau\left((\alpha x+\beta y)^{*} z\right)=\tau\left(\left(\bar{\alpha} x^{*}+\bar{\beta} y^{*}\right) z\right)=\bar{\alpha} \tau\left(x^{*} z\right)+\bar{\beta} \tau\left(y^{*} z\right)$
2. $\tau\left(x^{*}(\alpha y+\beta z)\right)=\alpha \tau\left(x^{*} y\right)+\beta \tau\left(x^{*} z\right)$
3. $\tau\left(x^{*} x\right) \geq 0$ by the definition of $\tau$.
4. Let $z_{n}$ be defined as before. Since $z_{n}^{*} z_{n} \in I^{+}$it follows that $\tau\left(z_{n}^{*} z_{n}\right)=$ $\overline{\tau\left(z_{n}^{*} z_{n}\right)}$. Expanding both for $n=1,2$, some algebra shows that, $\overline{\tau\left(x^{*} y\right)}=$ $\tau\left(y^{*} x\right)$.

Lastly,
$x^{*} a^{*} a x \leq\|a\|^{2} x^{*} x \Longrightarrow \tau\left((a x)^{*} a x\right) \leq\|a\|^{2} \tau\left(x^{*} x\right) \Longrightarrow\|a x\|_{H S \tau} \leq\|a\|\|x\|_{H S \tau}$.

Claim 1.6.5. If $a \in I$ then $|a|=\left(a^{*} a\right)^{\frac{1}{2}} \in I$. Moreover, for all $a \in I$ and $b \in A$ we have that $|\tau(a b)| \leq\|b\| \tau(|a|)$.

Proof. We use semicontinuity and an approximation argument. First consider the case where $a \in I^{+}$. We have that,

$$
\begin{equation*}
|\tau(a b)|=\left|\left\langle a^{1 / 2}, a^{1 / 2} b\right\rangle\right| \leq\left\|a^{1 / 2}\right\|_{H S \tau}\left\|a^{1 / 2} b\right\|_{H S \tau} \leq\left\|a^{1 / 2}\right\|_{H S \tau}^{2}\|b\|=\tau(a)\|b\| \tag{2}
\end{equation*}
$$

Next, let $a \in I$. since $a=\sum_{k=1}^{n} \lambda_{k} a_{k}$ where $a_{k} \in I^{+}$for all $k$. We have that,

$$
\begin{equation*}
|\tau(a b)|=\left|\sum_{k=1}^{n} \lambda_{k} \tau\left(a_{k} b\right)\right| \leq \sum_{k=1}^{n}\left|\lambda_{k}\right| \tau\left(a_{k}\right)\|b\|=C\|b\| \tag{3}
\end{equation*}
$$

where the last inequality is given by (2) and $C>0$ is a constant depending on $a$. Now, for $a \in I$ let $w_{n}=a\left(1 / n+a^{*} a\right)^{1 / 2}$. Since $a \in I$ and $I$ is an ideal, $w_{n} \in I$. Define $h_{n}: \sigma\left(a^{*} a\right) \rightarrow \mathbb{R}$ by $h_{n}(x)=(1 / n+x)^{-1 / 2} x$ where $\sigma(a)$ is the spectrum of $a$. Then $w_{n}^{*} a=h_{n}\left(a^{*} a\right)$, so $\sigma\left(w_{n}^{*} a\right)=h_{n}\left(\sigma\left(a^{*} a\right)\right) \subseteq[0, \infty)$. Thus, $\left\{w_{n}^{*} a\right\}$ is a sequence of positive elements. Now consider, $g_{n}: \sigma\left(a^{*} a\right) \rightarrow \mathbb{R}$ defined by $g_{n}(x)=(1 / n+x)^{-1 / 2} x-x^{1 / 2}$. Observe that $\lim _{n \rightarrow \infty} g_{n}=0$, so there exists an $N$ such that $\left|g_{n}\right|<\epsilon$ whenever $n \geq N$. Hence, $\sigma\left(g_{n}\left(a^{*} a\right)\right)=g_{n}\left(\sigma\left(a^{*} a\right)\right) \subseteq(-\epsilon, \epsilon)$ whenever $n \geq N$ and since $g_{n}\left(a^{*} a\right)$ is self-adjoint, $w_{n}^{*} a$ converges in norm to $|a|$. By inequality (3) the sequence $\tau\left(w_{n}^{*} a\right)$ is bounded, so by lower semicontinuity, $\tau(|a|)<\infty$. Thus, $|a| \in I^{+} \subset I$

To show that $|\tau(a b)| \leq\|b\| \tau(|a|)$ for all $a \in I, b \in A$ we first note that $\left\|w_{n}\right\| \leq 1$ for all $n$. Indeed, consider the continuous functions $f_{n}: \sigma\left(a^{*} a\right) \rightarrow$ $\mathbb{R}$ defined by $f_{n}(x)=\left(\frac{1}{n}+x\right)^{-\frac{1}{2}} x\left(\frac{1}{n}+x\right)^{-\frac{1}{2}}$. Then for all $n, 0 \leq f_{n}<1$, and so $\sigma\left(f_{n}\left(a^{*} a\right)\right)=f_{n}\left(\sigma\left(a^{*} a\right)\right) \subseteq[0,1)$. Moreover, since $f_{n}\left(a^{*} a\right)=w_{n}^{*} w_{n} \in$ $A_{s a},\left\|w_{n}^{*} w_{n}\right\| \in[0,1]$ and so, $\left\|w_{n}\right\| \leq 1$ for all $n$. Next, let $\epsilon>0$ be given. Let $a \in I$ and $b \in A$ be fixed but arbitrary. Then, since $I$ is dense in $A$, we may choose $b^{\prime} \in I$ such that

$$
\begin{equation*}
\left\|b^{\prime}-b\right\|<\min \left\{\frac{\epsilon}{2 \tau(|a|)}, \frac{\epsilon}{2 C}\right\} \tag{4}
\end{equation*}
$$

Notice that, by (3), the function $\tau_{b^{\prime}}: A \rightarrow \mathbb{C}$ defined by $c \mapsto \tau\left(c b^{\prime}\right)$ is a bounded linear functional on $A$ and so is continuos. Thus, for any sequence $\left\{c_{n}\right\}$ in $A$ norm converging to $c$ we have that

$$
\begin{equation*}
\tau\left(c b^{\prime}\right)=\lim _{n \rightarrow \infty} \tau\left(c_{n} b^{\prime}\right) \tag{5}
\end{equation*}
$$

Observe that, $\left\|w_{n}|a|-a\right\|^{2}=\left\|\left(w_{n}|a|-a\right)^{*}\left(w_{n}|a|-a\right)\right\| \rightarrow 0$ by using the functional calculus as we did with $g_{n}$. Thus, using (5) we have,

$$
\left|\tau\left(a b^{\prime}\right)\right|=\lim _{n \rightarrow \infty}\left|\tau\left(w_{n}|a| b^{\prime}\right)\right| \stackrel{1.6 .3}{=} \lim _{n \rightarrow \infty}\left|\tau\left(|a| b^{\prime} w_{n}\right)\right| \stackrel{(2)}{\leq} \tau(|a|)\left\|b^{\prime}\right\| \sup _{n}\left\|w_{n}\right\| \leq \tau(|a|)\left\|b^{\prime}\right\|
$$

Observe that,

$$
\left||\tau(a b)|-\left|\tau\left(a b^{\prime}\right)\right|\right| \leq\left|\tau\left(a\left(b-b^{\prime}\right)\right)\right| \stackrel{(3)}{\leq} C\left\|b-b^{\prime}\right\| \stackrel{(4)}{<} \frac{\epsilon}{2}
$$

so that, $|\tau(a b)|-\frac{\epsilon}{2}<\left|\tau\left(a b^{\prime}\right)\right|$. Also,

$$
\left|\tau(|a|)\left\|b^{\prime}\right\|-\tau(|a|)\|b\|\right| \leq \tau(|a|)\left\|b^{\prime}-b\right\|<\frac{\epsilon}{2}
$$

so that, $\tau(|a|)\left\|b^{\prime}\right\|<\tau(|a|)\|b\|+\frac{\epsilon}{2}$. Hence, $\left|\tau\left(a b^{\prime}\right)\right| \leq \tau(|a|)\left\|b^{\prime}\right\|$ implies that $|\tau(a b)|<\tau(|a|)\|b\|+\epsilon$. Then, since $\epsilon$ was arbitrary we obtain the desired inequality.

Claim 1.6.6. The inequality $\tau(|a+b|) \leq \tau(|a|)+\tau(|b|)$ holds for all $a, b \in I$.
Proof. Note that for all $x$ such that $\|x\| \leq 1,|\tau(a x)| \leq \tau(|a|)\|x\| \leq \tau(|a|)$ by 1.6.5. Thus, $\sup _{\|x\| \leq 1}|\tau(a x)| \leq \tau(|a|)$. Next, since $\left\|w_{n}^{*}\right\|=\left\|w_{n}\right\| \leq 1$ lower $\|x\| \leq 1$ semicontinuity gives us that $\tau(|a|) \leq \liminf _{n \rightarrow \infty} \tau\left(w_{n}^{*} a\right) \leq \sup _{\|x\| \leq 1}|\tau(a x)|$. Hence,

$$
\begin{equation*}
\tau(|a|)=\sup _{\|x\| \leq 1}|\tau(a x)| \tag{6}
\end{equation*}
$$

Thus,
$\tau(|a+b|)=\sup _{\|x\| \leq 1}|\tau(a x)+\tau(b x)| \leq \sup _{\|x\| \leq 1}|\tau(a x)|+\sup _{\|x\| \leq 1}|\tau(b x)|=\tau(|a|)+\tau(|b|)$

Remark. Note that 1.6.6 implies that,

$$
\begin{equation*}
\tau(|a b|)=\sup _{\|x\| \leq 1}|\tau(a b x)| \stackrel{1.6 .5}{\leq} \sup _{\|x\| \leq 1} \tau(|a|)\|b\|\|x\|=\tau(|a|)\|b\| \tag{7}
\end{equation*}
$$

Remark. For any $a \in A$ using the functional calculus on $C^{*}\left(a^{*} a, 1\right)$, it follows that, $\left(a^{*} a\right)^{\frac{1}{2}}-\left(\frac{1}{n}+a^{*} a\right)^{-\frac{1}{2}} a^{*} a \in A^{+}$for all $n$ so that $\tau\left(w_{n}^{*} a\right) \leq \tau(|a|)$. Thus, $\limsup _{n \rightarrow \infty} \tau\left(w_{n}^{*} a\right) \leq \tau(|a|) \leq \liminf _{n \rightarrow \infty} \tau\left(w_{n}^{*} a\right)$ by lower semicontinuity. Hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tau\left(w_{n}^{*} a\right)=\tau(|a|) \tag{8}
\end{equation*}
$$

for all $a \in A$.
Claim 1.6.7. If $\tau$ is an unbounded trace; the inequality $\tau(|a+b|) \leq \tau(|a|)+\tau(|b|)$ holds for all $a, b \in A$.

Proof. Let $\left(u_{\alpha}\right)_{\alpha \in \Lambda_{I+}}$ be the approximate unit from lemma 1.5, and let $x_{\alpha}=$ $u_{\alpha} a$. Note that $x_{\alpha} \in I$ since $I$ is a two sided ideal and $u_{\alpha} \in I$ for all $\alpha$. Also
note that, $\left\|u_{\alpha}\right\|^{2} \leq 1$. Thus,

$$
\left|x_{\alpha}\right|^{2}=x_{\alpha}^{*} x_{\alpha}=a^{*} u_{\alpha}^{2} a \leq a^{*}\left\|u_{\alpha}^{2}\right\| a \leq|a|^{2}
$$

by Murphy (2.2.5). Thus, since taking roots of positive elements preserves inequalities, $\left|x_{\alpha}\right| \leq|a|$ for all $\alpha$, and so

$$
\begin{equation*}
\limsup _{\alpha \in \Lambda_{I^{+}}} \tau\left(\left|x_{\alpha}\right|\right) \leq \tau(|a|) \tag{9}
\end{equation*}
$$

Next, since $x_{\alpha} \xrightarrow{\|\cdot\|} a$ and $a \mapsto|a|$ is continuous by Rødam (1.2.5), it follows that $\left|x_{\alpha}\right| \xrightarrow{\|\cdot\|}|a|$. So by (9) and lower semicontinuity,

$$
\tau(|a|) \leq \liminf _{\alpha \in \Lambda_{I^{+}}} \tau\left(\left|x_{\alpha}\right|\right)
$$

Thus, we have that

$$
\begin{equation*}
\lim _{\alpha \in \Lambda_{I^{+}}} \tau\left(\left|x_{\alpha}\right|\right)=\tau(|a|) . \tag{10}
\end{equation*}
$$

Similarly, if we let $y_{\alpha}=u_{\alpha} b$, then $\lim _{\alpha \in \Lambda_{I^{+}}} \tau\left(\left|y_{\alpha}\right|\right)=\tau(|b|)$. Observe that, $x_{\alpha}+y_{\alpha}=u_{\alpha}(a+b)$ so using the continuity of the map $a \mapsto|a|$ once more we have $\left|x_{\alpha}+y_{\alpha}\right| \xrightarrow{\|\cdot\|}|a+b|$. Hence, by lower semicontinuity and 1.6.6 we have that,

$$
\tau(|a+b|) \leq \liminf _{\alpha \in \Lambda_{I^{+}}} \tau\left(\left|x_{\alpha}+y_{\alpha}\right|\right) \leq \liminf _{\alpha \in \Lambda_{I^{+}}}\left(\tau\left(\left|x_{\alpha}\right|\right)+\tau\left(\left|y_{\alpha}\right|\right)\right)=\tau(|a|)+\tau(|b|)
$$

Claim 1.6.8. For $a \in A$, if $|a| \in I$, then $\left|a^{*}\right| \in I$.
Proof. Define $w_{n}$ as before. Let $\epsilon>0$, and let

$$
g_{n}(x)=\left(\frac{1}{n}+x\right)^{-\frac{1}{2}} x^{\frac{1}{2}}\left(\frac{1}{n}+x\right)^{-\frac{1}{2}}
$$

on $\left[0,\|a\|^{2}\right]$. Then by Stone-Weierstrass, for each $n$ there exists a polynomial $f_{n}$ such that $\left|g_{n}(x)-f_{n}(x)\right|<\frac{\epsilon}{2\|a\|^{2}}$ for all $x \in\left[0,\|a\|^{2}\right]$. Note that for any polynomial $f$ we have that

$$
a f\left(a^{*} a\right) a^{*}=a\left(\sum_{k=1}^{\ell} a_{k}\left(a^{*} a\right)^{k}\right) a^{*}=\sum_{k=1}^{\ell} a_{k} a\left(a^{*} a\right)^{k} a^{*}
$$

$$
=\sum_{k=1}^{\ell} a_{k}\left(a a^{*}\right)^{k} a a^{*}=\left(\sum_{k=1}^{\ell} a_{k}\left(a a^{*}\right)^{k}\right) a a^{*}=f\left(a a^{*}\right) a a^{*}
$$

Observe that,

$$
\begin{gathered}
\left\|a g_{n}\left(a^{*} a\right) a^{*}-g_{n}\left(a a^{*}\right) a a^{*}\right\| \\
=\left\|a g_{n}\left(a^{*} a\right) a^{*}-a f\left(a^{*} a\right) a^{*}+f\left(a a^{*}\right) a a^{*}-g_{n}\left(a a^{*}\right) a a^{*}\right\| \\
\leq\|a\|\left\|g_{n}\left(a^{*} a\right)-f_{n}\left(a^{*} a\right)\right\|\|a\|+\|a\|^{2}\left\|g_{n}\left(a a^{*}\right)-f_{n}\left(a a^{*}\right)\right\|<\epsilon .
\end{gathered}
$$

Thus,

$$
w_{n}|a| w_{n}^{*}=a g_{n}\left(a^{*} a\right) a^{*}=g_{n}\left(a a^{*}\right) a a^{*}=\left(\frac{1}{n}+a a^{*}\right)^{-1}\left(a a^{*}\right)^{\frac{3}{2}}
$$

and so $w_{n}|a| w_{n}^{*} \xrightarrow{\|\cdot\|}\left|a^{*}\right|$ by the functional calculus. Hence, by lower semicontinuity,

$$
\begin{gathered}
\tau\left(\left|a^{*}\right|\right) \leq \liminf _{n \rightarrow \infty} \tau\left(w_{n}|a| w_{n}^{*}\right) \stackrel{1.6 .3}{=} \liminf _{n \rightarrow \infty} \tau\left(|a| w_{n}^{*} w_{n}\right) \\
\stackrel{1.6 .5}{\leq} \liminf _{n \rightarrow \infty} \tau(|a|)\left\|w_{n}^{*} w_{n}\right\| \leq \tau(|a|)
\end{gathered}
$$

and so $\left|a^{*}\right| \in I$.
Claim 1.6.9. For $a \in A$, if $|a| \in I$, then $a \in I$.
Proof. First, if $a \in A_{s a}$ then $|a|=a^{+}+a^{-}$where $a^{+}$and $a^{-}$are defined in the proof of 1.6.1. Then, $|a|-a^{+}=a^{-} \in A^{+}$and $|a|-a^{-}=a^{+} \in A^{+}$. Thus, since $I$ is hereditary by 1.6.2, $a^{+}, a^{-} \in I$, and so $a^{+}-a^{-}=a \in I$.

Next, for a general $a \in A$ we separate $a$ into its real and imaginary parts, $a=x+i y$. Then,

$$
2 \tau(|x|)=\tau(|x+i y+x-i y|) \stackrel{1.6 .7}{\leq} \tau(|a|)+\tau\left(\left|a^{*}\right|\right)<\infty
$$

by the previous claim. Thus, by the self-adjoint case, $x \in I$ and similarly for $y$ and so $a=x+i y \in I$.

Claim 1.6.10. The map $\|\|\cdot\|\|: I \rightarrow[0, \infty)$ given by $\|||a|\|=\| a \|+\tau(|a|)$ is a sub-multiplicitive norm for $I$ which makes $I$ a non-unital Banach algebra. Moreover, this norm satisfies the inequality $\|\|x y\|\| \leq\|x\||\|y\||\|+\| x\| \|\|y\|$.

Proof. First we show that $\mid\|\cdot\| \|$ is a norm. Observe that:

1. $\||\lambda a|\|=\|\lambda a\|+\tau(|\lambda a|) \leq|\lambda|(\|a\|+\tau(|a|))$ since $\tau$ is linear.
2. Since $\|a\| \geq 0$ and $\tau(|a|) \geq 0$ (since $|a| \in I^{+}$), $\|||a| \| \geq 0$. Moreover, if $\||\mid a\| \|=0$ then $\|a\|=0$ by positivity and so $a=0$ since $\|\cdot\|$ is a norm. Next, $0 \in I$ whenever $I$ is nonempty. Then since $|0|=\left(0^{*} 0\right)^{\frac{1}{2}}=0, \tau(|0|)=$ $\tau(|0|)+\tau(|0|)$ implies $\tau(|0|)=0$ so that $\||0|\| \mid=0$.
3. $\||a+b|\|=\|a+b\|+\tau(|a+b|) \stackrel{1.6 .6}{\leq}\|a\|+\|b\|+\tau(|a|)+\tau(|b|)=\|||a|\|+|\| b|| |$
4. $|\|a b|\|\mid=\| a b\|+\tau(|a b|) \leq\| a\|\|b\|+\tau(|a b|) \stackrel{(7)}{\leq}\| a\|\|b\|+\tau(|a|)\| b \|$ $=|\|a| ||\|b\| \leq|\| a|||(| | b \|+\tau(|b|))=|||a||||| | b| | \mid$.

To show completeness suppose that $\left\{a_{n}\right\}$ is a Cauchy sequence under $\|\|\cdot\|\|$. Then given $\epsilon>0$ there exists an $N>0$ such that

$$
\left\|\mid a_{n}-a_{m}\right\|\|=\| a_{n}-a_{m} \|+\tau\left(\left|a_{n}-a_{m}\right|\right)<\epsilon
$$

whenever $n, m \geq N$. This means that $\left\{a_{n}\right\}$ is Cauchy under $\|\cdot\|$ and so converges to some $a \in A$. Additionally, this implies that $\tau\left(\left|a_{n}-a_{m}\right|\right)<\epsilon$ whenever $m, n \geq N$. Moreover, 1.6.6 implies that $\tau\left(\left|a_{n}\right|\right)-\tau\left(\left|a_{N}\right|\right)<\tau\left(\left|a_{n}-a_{N}\right|\right)$. Putting this together we have that $\tau\left(\left|a_{n}\right|\right)<\tau\left(\left|a_{N}\right|\right)+\epsilon$ for all $n \geq N$. Thus, the sequence $\left\{\tau\left(\left|a_{n}\right|\right)\right\}$ is bounded so by lower semicontinuity $|a| \in I$. Hence, by 1.6.9, $a \in I$. Moreover, since $\tau\left(\left|a_{N}-a_{n}\right|\right)<\epsilon$ whenever $n \geq N$ lower semicontinuity once more gives $\tau\left(\left|a_{n}-a\right|\right) \rightarrow 0$. Thus, $a_{n} \rightarrow a$ under $\||\cdot|\|$ and our space is complete.
Finally, $|\|a b \mid\|=\|a b\|+\tau(|a b|) \leq\|a\|\|b\|+\tau(|a b|) \stackrel{(7)}{\leq}\|a\|\|b\|+\tau(|a|)\|b\|=$ $|||a|||\|b\| \leq|||a|||\|b\|+\|a\||\| b|| |$ so the inequality is satisfied.

Remark. Note that if $A$ is unital then $I=A$ since the invertibles are open and $I$ is a dense ideal. Thus, our unbounded trace is just a trace and so what we have developed is only interesting in the non-unital case.

## 2 K-theory and Dense Subalgebras

Now that we have a dense subalgebra $I$ which is the domain of an unbounded trace $\tau$ we would like to know: Under what conditions a dense subalgebra will have the same K-theory as its parent algebra. Moreover, does our dense subalgebra $I$ meet those conditions? For now we will assume that our parent algebra $A$ is unital which, as we will see, will not make a difference when we switch to the K-theory in the non-unital case.

Lemma 2.1. For any dense unital subalgebra $B$ of a unital Banach algebra $A$ the following are equivalent.
i) $B$ is inverse closed in $A$.
ii) Every maximal right ideal $\mathfrak{n}$ of $B$ is a relatively closed subset. That is, $\mathfrak{n}=B \cap \overline{\mathfrak{n}}$.
iii) Every irreducible B-module $N$ extends to an $A$-module $M$; that is, $N$ is a $B$-submodule of the restriction of $M$ to $B$.

Proof. i) $\Longrightarrow \boldsymbol{i i}$ : Since $B$ is inverse closed in $A, \mathfrak{n} \cap \operatorname{Inv}(A)=\emptyset$ for every maximal right ideal $\mathfrak{n}$ of $B$. By definition, every neighborhood of $a \in \overline{\mathfrak{n}}$ contains a point of $\mathfrak{n}$. Since $\operatorname{Inv}(A)$ is open, $\overline{\mathfrak{n}} \cap \operatorname{Inv}(A)=\emptyset$. Next, we show that $\overline{\mathfrak{n}}$ is a right ideal in $A$. Since $B$ is dense in $A$ and addition and multiplication are continuous, given any $\alpha a+\beta b$ where $\alpha, \beta \in \overline{\mathfrak{n}}$ we may construct a sequence

$$
\alpha_{n} a_{n}+\beta_{n} b_{n} \text { such that }\left\|\alpha_{n} a_{n}+\beta_{n} b_{n}-(\alpha a+\beta b)\right\|<2^{-n}
$$

where $\alpha_{n}, \beta_{n} \in \mathfrak{n}$ and $a_{n}, b_{n} \in B$. Thus, $\alpha a+\beta b \in \overline{\mathfrak{n}}$ so that $\overline{\mathfrak{n}}$ is an ideal in $A$. Then it follows that $\overline{\mathfrak{n}} \cap B$ is an ideal in $B$. Moreover, since $\overline{\mathfrak{n}} \cap B$ does not contain the unit it is a proper ideal of $B$. Thus, by maximality, $\overline{\mathfrak{n}} \cap B=\mathfrak{n}$ and so $\mathfrak{n}$ is relatively closed.
$\boldsymbol{i i}) \Longrightarrow \boldsymbol{i i i}):$ Suppose that $N$ is an irreducible $B$-module. Define $\varphi_{n}: B \rightarrow$ $N$ by $a \mapsto n a$ where $n \in N$. Then for any nonzero $n \in N$ we have that $\varphi_{n}(1)=n \neq 0$ so that $\varphi_{n}$ is nonzero whenever $n \neq 0$. Fix a nonzero $n \in N$. Since the image of $\varphi_{n}$ is a submodule of the irreducible module $N$, we must have that $\varphi_{n}$ is surjective. Let $\mathfrak{n}$ be the kernel of $\varphi_{n}$. Then $\psi_{n}$, the map induced by $\varphi_{n}$ on $\mathfrak{n}^{B}$, is an isomorphism. Hence, $\mathfrak{n}$ is a maximal right ideal of $B$.

Next, let $\mathfrak{m}=\overline{\mathfrak{n}}$. Then by ii), $\mathfrak{n}=\mathfrak{m} \cap B$. So, by the second isomorphism theorem,

$$
N \cong \mathfrak{m} \cap B^{B} \cong \mathfrak{m}^{\mathfrak{m}+B} \subseteq \mathfrak{m} \backslash^{A}=M
$$

$\boldsymbol{i i i}) \Longrightarrow \boldsymbol{i}$ : We show the contrapositive. Suppose that $B$ is not inverse closed in $A$. That is, there exists an $a \in B$ that is invertible in $A$ but not invertible in $B$. Since $a$ is invertible in $A, a$ cannot have a right inverse in $B$ by the uniqueness of inverses. Consider the right ideal generated by $a,(a)=a B$. Since $a$ is not right invertible $\mathbb{1} \notin(a)$ so that $(a)$ is a proper right ideal. Thus,
$(a)$ is contained in a maximal right ideal, say $\mathfrak{n} \in B$. Then $\mathfrak{n}{ }^{B}$ is an irreducible $B$-module. Letting $[\mathbb{1}] \in \mathfrak{n}{ }^{B}$ be the class of the identity of $B$ we have that,

$$
\begin{equation*}
[\mathbb{1}] a=a=0, \text { i.e. }(\mathfrak{n}+\mathbb{1}) a=\mathfrak{n}+a=\mathfrak{n} \text { since } a \in \mathfrak{n} \tag{11}
\end{equation*}
$$

Note that for any $A$-module $M$, since $a \in \operatorname{Inv}(A)$ the map $M \rightarrow M$ defined by $m \mapsto m a$ is injective. Thus, if $\mathfrak{n} B$ were contained in the restriction of $M$ to $B$, by (11) we would have that $[\mathbb{1}] \mapsto 0$. Since this map is injective that would mean $[\mathbb{1}]=0$, a contradiction.

Corollary 2.1.1. Let $B$ be a dense unital subalgebra of the unital Banach algebra $A$ (with the same unit). Then $M_{n}(B)$ is inverse closed in $M_{n}(A)$ whenever $B$ is inverse closed in $A$ for all $n$.

Proof. Let $\mathbf{e}_{i j}$ be the $n \times n$ matrix with $1_{A}$ in the $i j$ 'th entry and zeros elsewhere and let $i d_{n}$ be the identity matrix in $M_{n}(B)$. Note that for any $M_{n}(B)$-module, say $W, W=i d_{n}(W)=\sum_{i=1}^{n} \mathbf{e}_{i i}(W)$. Moreover, if $x \in \mathbf{e}_{i i}(W) \cap \mathbf{e}_{j j}(W)$ where $i \neq j$, then $\mathbf{e}_{i i} y=x=\mathbf{e}_{j j} y^{\prime}$ for some $y, y^{\prime} \in W$. Thus, $0=\mathbf{e}_{i i} \mathbf{e}_{j j} y^{\prime}=$ $\mathbf{e}_{i i} \mathbf{e}_{i i} y=\mathbf{e}_{i i} y=x$. So $\mathbf{e}_{i i}(W) \cap \mathbf{e}_{j j}(W)=\{0\}$ whenever $i \neq j$. Furthermore, $\mathbf{e}_{i i}(W) \cong \mathbf{e}_{j j}(W) \cong N$ for some $B$-module $N$ by means of the shift operator. Hence, any $M_{n}(B)$-module $W$ is the direct sum $N^{\oplus} n$ for some $B$-module $N$. Next, note that any submodule $V \leq W$ is of the form $L^{\oplus}{ }^{n}$ for some $B$-module $L$ which is a submodule of $N$. Thus, $V \leq W$ if and only if $L \leq N$ and so; any $M_{n}(B)$-module $W=N^{\oplus}$ is irreducible if and only if $N$ is an irreducible $B$-module.

By supposition $B$ is inverse closed in $A$, so by the previous lemma every irreducible $B$-module $N$ extends to a $A$-module $M$. Since every irreducible $M_{n}(B)$-module is of the form $N^{\oplus} n$ where $N$ is a irreducible $B$-module it follows that $N^{\oplus n}$ extends to the $M_{n}(A)$-module $M^{\oplus n}$. Thus, by the previous lemma once more, $M_{n}(B)$ is inverse closed in $M_{n}(A)$.

Theorem 2.2. Let $A$ be a unital $C^{*}$-algebra and let $B \subseteq A$ be a dense unital Banach *-subalgebra such that
i) There is a topology on $B$ stronger then the topology $B$ inherits from $A$ under which $B$ is a Banach algebra.
ii) $B$ is inverse closed in $A$.

Then the natural map induced by inclusion, $\iota_{*}: K_{0}(B) \rightarrow K_{0}(A)$, is an isomorphism.
proof of surjectivity. First we show that the map is surjective. Note that it suffices to show that for an element of the form $[p] \in K_{0}(A)$ there exists $\mathrm{a}[q] \in K_{0}(B)$ such that $[p]=[q]$ since such elements generate $K_{0}(A)$ and $K_{0}(B)$. Thus, for $[p] \in K_{0}(A), p=\left(a_{i j}\right)$ is a projection in $M_{n}(A)$ for some $n$. Since $B$ is dense in $A$, given $\epsilon>0$ there exists a $b_{i j}$ for each $a_{i j}$ such that $\left\|a_{i j}-b_{i j}\right\|<\frac{\epsilon}{n^{2}}$. Let $y=\left(b_{i j}\right) \in M_{n}(B)$. Then by the triangle inequality, $\|p-y\| \leq \sum_{i, j=1}^{n}\left\|a_{i j}-b_{i j}\right\|<\epsilon$. Take $x=\frac{1}{2}(y+y *)$, then

$$
\|x-p\|=\left\|\frac{1}{2}\left(y-p+y^{*}-p^{*}\right)\right\| \leq \frac{1}{2}\|y-p\|+\frac{1}{2}\left\|(y-p)^{*}\right\| \leq \epsilon
$$

Thus, for any $\epsilon>0$ there exists a self-adjoint $x \in M_{n}(B)$ such that $\|x-p\|<\epsilon$. Note that $\|x\| \leq \epsilon+\|p\|$; and so,

$$
\begin{gathered}
\left\|x^{2}-x\right\|=\left\|x^{2}-p+p-x\right\| \leq\left\|x^{2}-p^{2}\right\|+\|p-x\|=\|(x+p)(x-p)\|+\|x-p\| \\
<\epsilon\|x+p\|+\epsilon \leq \epsilon(\epsilon+\|p\|+\|p\|)+\epsilon=\epsilon^{2}+\epsilon(2\|p\|+1)<\epsilon^{2}+3 \epsilon
\end{gathered}
$$

Hence, we may take $\epsilon$ small enough so that $\left\|x^{2}-x\right\|<\eta$ where $\eta \in\left(0, \frac{1}{4}\right]$. Thus, by the functional calculus, we may take $\eta$ small enough that $\sigma(x) \subseteq\left(-\frac{1}{n}, \frac{1}{n}\right) \cup$ ( $1-\frac{1}{n}, 1+\frac{1}{n}$ ), $n \geq 4$. Let $q$ be the spectral projection of $x$ corresponding to the interval $\left(1-\frac{1}{n}, 1+\frac{1}{n}\right)=K_{n}$; i.e. $\chi_{K_{n}}(x)$. Then $q$ is a projection since

$$
\chi_{K_{n}}(t)=\left(\chi_{K_{n}}(t)\right)^{2}=\overline{\chi_{K_{n}}(t)} \text { for any } t \in \sigma(x)
$$

Moreover, $\left|t-\chi_{K_{n}}(t)\right|<\frac{1}{n}$ for all $t \in \sigma(x)$ so that $\|x-q\|<\frac{1}{n}$. Then $\|q-p\| \leq$ $\|q-x\|+\|x-p\|<\frac{1}{n}+\epsilon$. Taking $\epsilon \leq \frac{1}{n}$ we have that $\|p-q\|<\frac{2}{n}$. Take $n=4$. Note that if $p$ and $q$ are conjugate (possibly after stabilization) they are both representatives of the same class in $K_{0}(A)$. Let $u=p q+(1-p)(1-q)$. Then $p u=p q=u q$ so to show that $[p]=[q]$ we need only show that $u$ is invertible. Observe that, $u=p q+1-p-q+p q=1+p-q-2 p+2 p q=1+(1-2 p)(p-q)$, and since $p$ is a projection the functional calculus shows that $\|1-2 p\|=1$. Hence,

$$
\|1-u\| \leq\|1-2 p\|\|p-q\|<\frac{1}{2}
$$

so that $u$ is invertible and $[p]=[q]$ in $K_{0}(A)$.
It remains to be shown that $q \in M_{n}(B)$. Let $\Gamma$ be a smooth closed convex curve in the resolvent set of $x$ encircling $\left(\frac{1}{2}, \frac{3}{2}\right)$ but not $\left(-\frac{1}{2}, \frac{1}{2}\right)$ parameterized by $t$ on $[a, b]$. For instance, the circle centered at 1 of radius $1 / 2$ given by $z(t)=$
$1+\frac{1}{2} e^{i t}$ for $t \in[0,2 \pi]$. Form a partition of [a,b], i.e. $a=t_{0}<t_{1}<\cdots<t_{n}=b$, where $t_{j-1} \leq t_{j}^{\prime} \leq t_{j}$. Consider the limit of the Riemann sum

$$
\begin{equation*}
\frac{1}{2 \pi i} \sum_{j=1}^{n}\left(\mathbb{1} z\left(t_{j}^{\prime}\right)-x\right)^{-1}\left[z\left(t_{j}\right)-z\left(t_{j-1}\right)\right] \tag{12}
\end{equation*}
$$

as $|P|:=\max \left\{t_{j}-t_{j-1}: j=1, \cdots, n\right\} \rightarrow 0$. Note that this sum converges in the norm of $B$ to the line integral of the Banach space valued function $(\mathbb{1} z(t)-x)^{-1}$, i.e. $\frac{1}{2 \pi i} \int_{\Gamma}(\mathbb{1} z(t)-x)^{-1} d z$. Indeed, Since since $\mathbb{1}, x \in B$ and $B$ is inverse closed, we have that $(\mathbb{1} z(t)-x)^{-1} \in B$. Then since inversion is continuous on the invertible elements of $B$ (Murphy 1.2.3) and $[a, b]$ is compact, $t \mapsto(\mathbb{1} z(t)-x)^{-1}$ is uniformly continuous. Hence, there exists a $\delta$ such that $\left\|\left(\mathbb{1} z\left(t_{j}\right)-x\right)^{-1}-\left(\mathbb{1} z\left(t_{i}\right)-x\right)^{-1}\right\|_{B}<\frac{\epsilon}{|\Gamma|}$ whenever $\left|t_{j}-t_{i}\right|<\delta$ Thus, given any two partitions $P$ and $Q$ such that $|P|,|Q|<\delta$ we have that,

$$
\begin{gathered}
\left\|\sum_{j=1}^{n}\left(z\left(t_{j}^{\prime}\right)-x\right)^{-1}\left[z\left(t_{j}\right)-z\left(t_{j-1}\right)\right]-\sum_{i=1}^{m}\left(z\left(t_{i}^{\prime}\right)-x\right)^{-1}\left[z\left(t_{i}\right)-z\left(t_{i-1}\right)\right]\right\|_{B} \\
<\frac{\epsilon}{|\Gamma|} \sum_{k=1}^{\ell}\left|z\left(t_{k}\right)-z\left(t_{k-1}\right)\right| \leq \epsilon
\end{gathered}
$$

where $\left\{t_{k}\right\}$ is the refinement of the partitions $P, Q$.
Next, let $\varphi$ be any multiplicative linear functional on the $C^{*}$-algebra generated by $x$ and $\mathbb{1}$. Since $\chi_{K}(x)$ is the limit of polynomials in $x$ and $\mathbb{1}$, we see that $\varphi\left(\chi_{K}(x)\right)=\chi_{K}(\varphi(x))$. Also, by considering (12) it follows that,

$$
\varphi\left(\frac{1}{2 \pi i} \int_{\Gamma}(\mathbb{1} z(t)-x)^{-1} d z\right)=\frac{1}{2 \pi i} \int_{\Gamma}(z(t)-\varphi(x))^{-1} d z .
$$

Hence,

$$
\varphi\left(\chi_{K}(x)\right)=\chi_{K}(\varphi(x))=\frac{1}{2 \pi i} \int_{\Gamma}(z(t)-\varphi(x))^{-1} d z=\varphi\left(\frac{1}{2 \pi i} \int_{\Gamma}(\mathbb{1} z(t)-x)^{-1} d z\right)
$$

Thus, since multiplicative linear functionals separate points,

$$
q=\chi_{K}(x)=\frac{1}{2 \pi i} \int_{\Gamma}(z(t)-x)^{-1} d z
$$

so that $q \in M_{n}(B)$ and our map is surjective.
proof of injectivity. Suppose that $\left[p_{1}\right],\left[p_{2}\right]$ are in $K_{0}(B)$ such that $\left[p_{1}\right]=\left[p_{2}\right]$ in $K_{0}(A)$. We need to show that $\left[p_{1}\right]=\left[p_{2}\right]$ in $K_{0}(B)$. Since $\left[p_{1}\right]=\left[p_{2}\right]$ in $K_{0}(A)$ there exists a projection $r \in M_{m}(A)$ and a $n \in \mathbb{N}$ such that (possibly by passing to a larger matrix by adding zeros) $\left(p_{1} \oplus r\right)$ is conjugate to $\left(p_{2} \oplus r\right)$ in $M_{n}(A)$. That is, there is a $u \in G L_{n}(A)$ such that $u\left(p_{1} \oplus r\right) u^{-1}=\left(p_{2} \oplus r\right)$. Let $\epsilon>0$ be given. Note that we may construct a projection $r_{0} \in M_{m}(B)$ as we did for $q$ in the proof of surjectivity such that

$$
\left\|r-r_{0}\right\|<\min \left\{\frac{\epsilon}{4}, \frac{\epsilon}{4\|u\|\left\|u^{-1}\right\|}\right\} .
$$

Let
$\gamma_{1}=\frac{\epsilon}{4\left\|p_{1} \oplus r_{0}\right\|\left\|u^{-1}\right\|}, \gamma_{2}=\frac{\epsilon\left\|u^{-1}\right\|}{4\|u\|\left\|u^{-1}\right\|\left\|p_{1} \oplus r_{0}\right\|+\epsilon}=\frac{\epsilon}{4\left(\|u\|+\gamma_{1}\right)\left\|p_{1} \oplus r_{0}\right\|}$.
Next, by the continuity of inversion, there exists a $\delta>0$ such that $\left\|u^{-1}-v^{-1}\right\|<$ $\gamma_{2}$ whenever $\|u-v\|<\delta$. Since $G L_{n}(A)$ is open in $M_{n}(A)$, by the density of $B$ in $A$ we can choose a $v \in G L_{n}(B)$ such that $\|u-v\|<\min \left\{\delta, \gamma_{1}\right\}$. Then since $\|v\|<\|u\|+\gamma_{1}$ we have that,

$$
\begin{gathered}
\left\|v\left(p_{1} \oplus r_{0}\right) v^{-1}-\left(p_{2} \oplus r_{0}\right)\right\| \\
\leq\left\|v\left(p_{1} \oplus r_{0}\right)\left(v^{-1}-u^{-1}\right)\right\|+\left\|(v-u)\left(p_{1} \oplus r_{0}\right) u^{-1}\right\| \\
+\left\|u\left(\left(p_{1} \oplus r_{0}\right)-\left(p_{1} \oplus r\right)\right) u^{-1}\right\|+\left\|\left(p_{2} \oplus r\right)-\left(p_{2} \oplus r_{0}\right)\right\| \\
<\left(\|u\|+\gamma_{1}\right)\left\|p_{1} \oplus r_{0}\right\|\left\|v^{-1}-u^{-1}\right\|+\|v-u\|\left\|p_{1} \oplus r_{0}\right\|\left\|u^{-1}\right\| \\
+\|u\|\left\|u^{-1}\right\|\left\|r_{0}-r\right\|+\left\|r_{0}-r\right\|<\epsilon
\end{gathered}
$$

Next, let $q=v\left(p_{1} \oplus r_{0}\right) v^{-1}, p=p_{2} \oplus r_{0}$, and let $w=p q+(1-p)(1-q)$. By the same argument as in the surjective case, $p w=w q$ and $w$ is invertible whenever $\epsilon<1$. Note that $w, w^{-1} \in M_{n}(B)$ since $q, p \in M_{n}(B)$. Thus, since $p_{2} \oplus r_{0}=(w v)\left(p_{1} \oplus r_{0}\right)(w v)^{-1}$ we have that $\left[p_{1} \oplus r_{0}\right]=\left[p_{2} \oplus r_{0}\right] \Longrightarrow\left[p_{1}\right]=\left[p_{2}\right]$ in $K_{0}(B)$ and so our map is injective.

Corollary 2.2.1. Let $A$ be a unital $C^{*}$-algebra and let $B \subseteq A$ be a dense unital $*$-subalgebra which becomes a Banach algebra in some norm $\|\cdot\|_{B} \geq\|\cdot\|_{A}$. Suppose that there is some constant $C \geq 1$ such that

$$
\begin{equation*}
\|a b\|_{B} \leq C\left(\|a\|_{A}\|b\|_{B}+\|a\|_{B}\|b\|_{A}\right) \quad \text { for all } \quad a, b \in B \tag{13}
\end{equation*}
$$

Then the natural map induced by inclusion $K_{0}(B) \rightarrow K_{0}(A)$, is an isomorphism.
Proof. By the previous theorem we need only show inverse closure. For an arbitrary $a \in B$, applying (13) to $x=y=a^{n}$ we have $\left\|a^{2 n}\right\|_{B} \leq 2 C\left\|a^{n}\right\|_{B}\left\|a^{n}\right\|_{A}$. Note that if $p(x)=x^{2}$ then since $p(\sigma(a))=\sigma(p(a))$, if $\lambda \in \sigma(a)$ then $\lambda^{2} \in$ $\sigma(p(a))$. Thus, if $r_{B}(a)$ is the spectral radius of $a \in B$, then $r_{B}\left(a^{2}\right)=\left(r_{B}(a)\right)^{2}$. Hence,

$$
\left(r_{B}(a)\right)^{2}=\lim _{n \rightarrow \infty}\left\|a^{2 n}\right\|_{B}^{\frac{1}{n}} \leq \lim _{n \rightarrow \infty}(2 C)^{\frac{1}{n}}\left\|a^{n}\right\|_{B}^{\frac{1}{n}}\left\|a^{n}\right\|_{A}^{\frac{1}{n}}=r_{B}(a) r_{A}(a)
$$

so that $r_{B}(a) \leq r_{A}(a)$ by the spectral radius formula. Next, if an element $c \in B$ is not invertible in $A$ then it is not invertible in $B$ so that $\sigma_{A}(a) \subseteq \sigma_{B}(a)$ and so $r_{A}(a) \leq r_{B}(a)$. Therefore, $r_{B}(a)=r_{A}(a)$.

Now if $a$ is invertible in $A$ then $a^{*} a$ is invertible in $A$. Since $a^{*} a$ is positive and invertible, $\sigma_{A}\left(a^{*} a\right) \subseteq\left[\eta,\|a\|^{2}\right]$ for some $\eta \in \mathbb{R}_{>0}$. Let $\lambda>\|a\|^{2}$. Observe that,

$$
\mu \in \sigma_{A}\left(\lambda-a^{*} a\right) \Longleftrightarrow \mu-\lambda \in \sigma_{A}\left(-a^{*} a\right) \Longleftrightarrow \lambda-\mu \in \sigma_{A}\left(a^{*} a\right) \subseteq\left[\eta,\|a\|^{2}\right] .
$$

It follows that, $\|a\|^{2} \geq \lambda-\mu>\|a\|^{2}-\mu$, so $\mu>0$. Moreover, $\lambda-\mu \geq \eta>0$ so that for all $\mu \in \sigma_{A}\left(\lambda-a^{*} a\right), \lambda>\mu>0$. Hence, $r_{B}\left(\lambda-a^{*} a\right)=r_{A}\left(\lambda-a^{*} a\right)<\lambda$, that is $\lambda \notin \sigma_{B}\left(\lambda-a^{*} a\right)$ and so $a^{*} a=\lambda-\left(\lambda-a^{*} a\right)$ is invertible in $B$. Suppose $c$ is the inverse of $a^{*} a$ in $B$. Then $c a^{*}$ is a left inverse of $a$ in $B$. Since $c a^{*}$ is a left inverse of $a$ in $A$ also, it must be the inverse in $A$ and so $a$ is invertible in $B$. Thus, $B$ is inverse closed.

Now we return to the case where $A$ and $B$ are non-unital.
Lemma 2.3. Suppose that $B$ is a nonunital Banach *-algebra and $A$ is a nonunital $C^{*}$-algebra containing $B$. If $B$ is dense in $A$ then $\widetilde{B}$ is dense in $\widetilde{A}$. Moreover, if $\|\cdot\|_{B} \geq\|\cdot\|_{A}$ then $\|\cdot\|_{\widetilde{B}} \geq\|\cdot\|_{\widetilde{A}}$.

Proof. Let $\epsilon>0$ and $(a, \lambda)$ be given. Since $B$ is dense in $A$, given any $a \in$ $A$ there exists a $b \in B$ such that $\|a-b\|_{A}<\epsilon$. Thus, $\|(a, \lambda)-(b, \lambda)\|_{\widetilde{A}}=$ $\|(a, 0)-(b, 0)\|_{\widetilde{A}}=\|a-b\|_{A}<\epsilon$, since the inclusion $a \mapsto(a, 0)$ is an isometric *-homomorphism.

Next, recall that if $B$ is a Banach algebra, setting $\|(b, \lambda)\|_{\widetilde{B}}=\|b\|_{B}+|\lambda|$ makes $\widetilde{B}$ a Banach algebra. Observe that, $\|(b, \lambda)\|_{\widetilde{A}} \leq\|(b, 0)\|_{\widetilde{A}}+\|(0, \lambda)\|_{\widetilde{A}}=$ $\|b\|_{A}+|\lambda| \leq\|b\|_{B}+|\lambda|=\|(b, \lambda)\|_{\widetilde{B}}$.

Lemma 2.4. Suppose that $B$ is a nonunital Banach *-algebra such that $B$ is dense in A, a nonunital $C^{*}$-algebra. Suppose also that

$$
\begin{equation*}
\|a b\|_{B} \leq\|a\|_{A}\|b\|_{B}+\|a\|_{B}\|b\|_{A} \text { for all } a, b \in B . \tag{14}
\end{equation*}
$$

Then for $\lambda, \mu \in \mathbb{C}$ we have,

$$
\|(a, \lambda)(b, \mu)\|_{\widetilde{B}} \leq 6\left(\|(a, \lambda)\|_{\widetilde{A}}\|(b, \mu)\|_{\widetilde{B}}+\|(a, \lambda)\|_{\widetilde{B}}\|(b, \mu)\|_{\widetilde{A}}\right)
$$

Proof. First, let $x \in A_{s a}$ and $r \in \mathbb{R}$. Define $f_{r}(y)=y+r$, which is continuous on $\sigma_{\widetilde{A}}((x, 0))$. Moreover, $f_{r}((x, 0))=(x, r)$, and so

$$
\sigma_{\widetilde{A}}((x, r))=\sigma_{\widetilde{A}}\left(f_{r}((x, 0))\right)=f_{r}\left(\sigma_{\tilde{A}}((x, 0))\right)=\sigma_{A}(x)+r .
$$

Let $b=\sup \sigma_{A}(x)$, and let $a=\inf \sigma_{A}(x)$. Then since $x \in A_{s a}$ and $A$ is nonunital, $\|x\|_{A}=-a$ or $b$. Moreover, since $(x, r) \in \widetilde{A}_{s a}$,

$$
\begin{gathered}
\|(x, r)\|_{\widetilde{A}}=\max \left\{\left|\sup \sigma_{\widetilde{A}}((x, r))\right|,\left|\inf \sigma_{\widetilde{A}}((x, r))\right|\right\} \\
=\max \left\{\left|\sup \sigma_{A}(x)+r\right|,\left|\inf \sigma_{A}(x)+r\right|\right\}
\end{gathered}
$$

Observe that,

$$
\left\|\left(x, \frac{a-b}{2}-a\right)\right\|_{\widetilde{A}}=\left|\sup \sigma_{A}(x)+\frac{a-b}{2}-a\right|=\left|\inf \sigma_{A}(x)+\frac{a-b}{2}-a\right|=\frac{b-a}{2}
$$

Next, if $r>\frac{a-b}{2}-a$ then $b+r>\frac{b-a}{2} \geq 0$, so that

$$
\left\|\left(x, \frac{a-b}{2}-a\right)\right\|_{\widetilde{A}}=\frac{b-a}{2}<b+r \leq\|(x, r)\|_{\widetilde{A}} .
$$

On the other hand, if $r<\frac{a-b}{2}-a$ then $a+r<\frac{a-b}{2} \leq 0$, so that

$$
\left\|\left(x, \frac{a-b}{2}-a\right)\right\|_{\widetilde{A}}=\frac{b-a}{2}<|a+r| \leq\|(x, r)\|_{\widetilde{A}}
$$

Note that,

$$
\frac{\|x\|_{A}-a}{2} \geq \frac{1}{2}\|x\|_{A} \text { and that } \frac{b+\|x\|_{A}}{2} \geq \frac{1}{2}\|x\|_{A} .
$$

Thus, since $\|x\|_{A}=-a$ or $b$, we have that

$$
\|x\|_{A} \leq b-a=2\left\|\left(x, \frac{a-b}{2}-a\right)\right\|_{\widetilde{A}} \leq 2\|(x, r)\|_{\widetilde{A}}
$$

for all $x \in A_{\text {sa }}$ and all $r \in \mathbb{R}$.
Next, for a general element $a \in A$ we write $a=x+i y$ Then for $\lambda \in \mathbb{C}$ by the self adjoint case we have,

$$
\|a\|_{A} \leq\|x\|_{A}+\|y\|_{A} \leq 2\|(x, \operatorname{Re}(\lambda))\|_{\tilde{A}}+2\|(y, \operatorname{Im}(\lambda))\|_{\widetilde{A}}
$$

Since

$$
\|(x, \operatorname{Re}(\lambda))\|_{\widetilde{A}}=\frac{1}{2}\left\|(a, \lambda)+(a, \lambda)^{*}\right\|_{\widetilde{A}} \leq\|(a, \lambda)\|_{\widetilde{A}}
$$

and similarly, $\|(y, \operatorname{Im}(\lambda))\|_{\widetilde{A}} \leq\|(a, \lambda)\|_{\widetilde{A}}$, we have that,

$$
\begin{equation*}
\|a\|_{A} \leq 4\|(a, \lambda)\|_{\widetilde{A}} \text { for all } a \in A \text { and all } \lambda \in \mathbb{C} \tag{15}
\end{equation*}
$$

Note that $\lambda \in \sigma(a, \lambda)$ since $(0, \lambda)-(a, \lambda)=(a, 0)$ is not invertible. Thus, for all $\lambda \in \mathbb{C}$ and all $a \in A$ we have that,

$$
\begin{equation*}
|\lambda| \leq\|(a, \lambda)\|_{\widetilde{A}} \tag{16}
\end{equation*}
$$

Putting all this together we have,

$$
\begin{gathered}
\|(a, \lambda)(b, \mu)\|_{\widetilde{B}} \leq\|a b+\lambda b+a \mu\|_{B}+|\lambda \mu| \leq\|a b\|+|\lambda|\|b\|_{B}+|\mu|\|a\|_{B}+|\lambda \mu| \\
\stackrel{(14)}{\leq}\|a\|_{A}\|b\|_{B}+\|a\|_{B}\|b\|_{A}+|\lambda|\|b\|_{B}+|\mu|\|a\|_{B}+|\lambda \mu| \\
=\|a\|_{B}\left(\|b\|_{A}+|\mu|\right)+\|b\|_{B}\left(\|a\|_{A}+|\lambda|\right)+|\lambda \mu| \\
\leq\left(\|a\|_{B}+|\lambda|\right)\left(\|b\|_{A}+|\mu|\right)+\left(\|b\|_{B}+|\mu|\right)\left(\|a\|_{A}+|\lambda|\right)+|\lambda \mu| \\
\quad \stackrel{(15)}{\leq}\|(a, \lambda)\|_{\widetilde{B}}\left(4\|(b, \mu)\|_{\widetilde{A}}+|\mu|\right)+\|(b, \mu)\|_{\widetilde{B}}\left(4\|(a, \lambda)\|_{\widetilde{A}}+|\lambda|\right)+|\lambda \mu| \\
\leq 4\left(\|(a, \lambda)\|_{\widetilde{B}}\|(b, \mu)\|_{\widetilde{A}}+\|(b, \mu)\|_{\widetilde{B}}\|(a, \lambda)\|_{\widetilde{A}}\right)+|\mu|\|(a, \lambda)\|_{\widetilde{B}}+|\lambda|\|(b, \mu)\|_{\widetilde{B}}+|\lambda||\mu| \\
\left.\quad \begin{array}{c}
(16) \\
\leq \\
5
\end{array}\|(a, \lambda)\|_{\widetilde{B}}\|(b, \mu)\|_{\widetilde{A}}+\|(b, \mu)\|_{\widetilde{B}}\|(a, \lambda)\|_{\widetilde{A}}\right)+\|(a, \lambda)\|_{\widetilde{A}}\left(\|b\|_{B}+|\mu|\right) \\
=6\left(\|(a, \lambda)\|_{\widetilde{B}}\|(b, \mu)\|_{\widetilde{A}}+\|(b, \mu)\|_{\widetilde{B}}\|(a, \lambda)\|_{\widetilde{A}}\right)
\end{gathered}
$$

as was to be shown.

Theorem 2.5. Let I be the ideal obtained from a unbounded trace $\tau$ from the previous section. Then the natural map induced by inclusion, $\iota_{*}: K_{0}(I) \rightarrow$ $K_{0}(A)$, is an isomorphism.

Proof. Note that the inclusion maps $\iota: I \hookrightarrow A$ and $\widetilde{\iota}: \widetilde{I} \hookrightarrow \widetilde{A}$ are algebra homomorphisms. Thus, we have the commutative diagram


Since $\left|\|\cdot \mid\|_{B}\right.$ satisfies the conditions of lemma $2.4,\left\|\left||\cdot| \|_{\widetilde{B}}\right.\right.$ satisfies the conditions of corollary 2.2.1. Hence, we have shown that $\widetilde{\iota_{*}}$ is an isomorphism. Thus, by the short 5's lemma, $\iota_{*}$ is an isomorphism.

Theorem 2.6. An unbounded trace on a $C^{*}$-algebra $A$ induces a dimension function on $K_{0}(A)$.

Proof. By the previous theorem $\iota_{*}^{-1}$ is an isomorphism and by claim 1.6.3 $\tau$ is a trace on $I$. Thus, by theorem $0.2\left(\operatorname{dim}_{\tau} \circ \iota_{*}^{-1}\right)$ is an algebra homomorphism.

